
Uniform Manifold
Approximation and

Projection
Pierre LAGUE & Ilian VANDENBERGHE - Université de Lille 1

RD - S2

Abstract
UMAP, or Uniform Manifold Approximation and Projection, was introduced in a research paper titled

"UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction" by Leland McInnes
and John Healy. The paper was published in the journal "arXiv" on February 2, 2018.

Section 1: Introduction

Uniform Manifold Approximation and Projection (UMAP) [3] is a dimension reduction technique that can be
used for visualization similarily to t-distributed Stochastic Neighbor Embedding (t-SNE), but also for general
non-linear dimension reduction. Before diving into the experiments, it is important to contextualize the under-
lying concepts UMAP is based on. UMAP is constructed from a theoretical framework based on Riemannian
geometry and algebraic topology.

Riemannian geometry [2] is a branch of differential geometry that deals with curved spaces as seen in
Figure 1. In UMAP, the high-dimensional data is considered to lie on a manifold, which can be seen as a curved
space embedded within the high-dimensional Euclidean space. UMAP leverages Riemannian geometry to model
the local and global structure of the data manifold, which is crucial for preserving the geometric relationships
between data points in the low-dimensional embedding.

Figure 1: Curvature of Riemannian Manifolds - Wikipedia

The riemannian geometrical objects are then studied and analyzed using algebraic topology [1]. UMAP
utilizes these concepts to understand the connectivity and structure of the data manifold. In particular, UMAP
constructs a weighted graph representation of the data manifold, where nodes represent data points and edges
represent the connections between neighboring points. By understanding the topological properties of the data
manifold, UMAP can create a low-dimensional embedding that preserves the essential topological features of
the original data.

Finally, manifold learning is a subfield of machine learning that focuses on understanding and representing
high-dimensional data lying on low-dimensional manifolds.

Section 2: UMAP Algorithm

The UMAP algorithm is founded on three assumptions about the data :

• The data is uniformly distributed on the riemannian manifold

• The riemannian metric is locally constant (or can be approximated as such) 1

1A Riemannian metric is a mathematical structure that defines how distances and angles are measured on a smooth manifold.



RD - S2 – Pierre LAGUE & Ilian VANDENBERGHE - Université de Lille 1 2

Figure 2: Here are displayed 6 points {A,B,C,D,E,F} forming 2 distinct clusters. Some distances have been displayed between
the points. We will refer to this as the high-dimension representation of the points.

• The manifold is locally connected 2

We will now explain the procedural steps involved in achieving a lower-dimensional representation of high-
dimensional data. In this study, we focus on 2D data and illustrate a 1D dimension reduction. The initial step
in the UMAP algorithm is the computation of similarity scores to discern clustered data points, to preserve the
inherent clustering structure within the resultant low-dimensional graph. UMAP utilizes a specified number
of neighbors to identify these clusters, often opting for 15 or more on extensive datasets. In this illustrative
example, we limit the neighborhood size to 3 for the sake of simplicity, facilitating the visualization of distinct
clusters (Figure 2).

This distance metric is referred to as the "High-Dimensional Similarity Score". UMAP computes this score
for each pair of high-dimensional points, capturing their proximity in the original feature space. Subsequently,
UMAP initiates the first dimension reduction step, wherein each point is positioned along an axis as reference
(in our example, the reference is point A in Figure 3, there are as many similarity curves as there are points)
based on its distance from the studied point (point A). Upon arranging the points along the axis, a "similarity
curve" is traced. This curve is calculated using the following formula:

f : exp−(d_1−d_2)/σ

Here, d_1 represents the distance between the studied point and the closest neighbor point (w.r.t. the initial
cluster), d_2 denotes the distance to the nearest non-neighbor point (both can be seen on Figure 2). σ serves as
a scaling factor that adjusts the characteristics of the "similarity curve" (depicted as the green curve in Figure
3, denoted as f(x), x being the point on which the score is computed). The parameter σ, in the similarity
function f , is fine-tuned such that, for all points in our dataset S = A,B,C,D,E, F , with k representing the
number of neighbors (here, 3) :

card(S)∑
i=1

f(Si) = log2(k)

In other words, the sum of the values obtained by applying the function f (representing the "similarity
curve") to each point equals the logarithm, base 2, of the number of neighbors. As depicted in Figure 3, the
computed values of the function showcase that f(B)+ f(C)+ f(D)+ f(E)+ f(F ) = 1.6, which corresponds to
log2(3). This step underscores the significance of two key hyperparameters: the number of neighbors (inclusive
of the point itself) and the parameter σ, which adjusts the curve to align with the data distribution. Notably,
the similarity curve and scores vary from one point to another. However, UMAP scales these curves such that
regardless of the proximity or distance between neighboring points, the sum of the similarity scores remains
consistent at log2(k), where k represents the specified number of neighbors.

It is essential to highlight that due to the variability of similarity scores across different points, it becomes
imperative to symmetrize these results. This symmetrization is crucial for maintaining consistency with the
underlying theory of topology and fuzzy sets 3, which form the basis of UMAP. By ensuring symmetry in the

2"locally connected" refers to the property that every point on the manifold has a neighborhood that is connected. In other
words, if you pick any point on the manifold and zoom in close enough, the portion of the manifold around that point will be
connected; there won’t be any gaps or separations.

3In a fuzzy set, instead of a binary membership function, elements are assigned membership degrees on a continuous scale
between 0 and 1, indicating the degree of belongingness to the set.



RD - S2 – Pierre LAGUE & Ilian VANDENBERGHE - Université de Lille 1 3

similarity scores, UMAP adheres more closely to the principles of topology and fuzzy sets, thus facilitating a
more robust and interpretable dimensionality reduction process (score A−B has to be same as score B−A). This
process differs from the t-SNE technique where t-SNE averages the two scores. For two different high-dimension
scores, s1 and s2, we can make them symmetrical by computing the following result :

fu(s1, s2) = (s1 + s2)− s1× s2

This new score is then assigned to both points in order to reach the perfect fit on the curve.

Figure 3: Similarity Curve

Following the initialization of a low-dimensional graph utilizing the similarity scores derived from the curve
illustrated in Figure 3, UMAP employs a technique known as Spectral Embedding 4. However, this graph
does not initially represent the high-dimension clusters as seen on Figure 4. To rectify this, UMAP chooses
two low-dimension points that should be put closer together. This is achieved by randomly selecting a pair of
points in a cluster proportionally to their high-dimensional score (here point A and B have a high-dimensional
score in the first cluster in Fig 2). Initially, the two high-dimension clusters are not represented in the low
dimension clusters. Point B needs to be closer to point A. That is done by iteratively moving B closer to A to
maximize its low-dimensional score using the t-distribution on the right. And moving B away from E, because
they don’t belong to the same high-dimension neighborhood, by minimizing its low-dimensional score using the
t-distribution on the left.

Figure 4: First step, representing the points in low dimension and choosing the points to compute the low dimension score Z(d).

The low-dimensional score Z is given by the following computation :

Z(p) =
1

1 + α× d2×β

With p being the distance between the moving point (in our example B) and the reference point (in our example
A). Parameters α and β control how tightly packed the points are at the end of the iterations. This way, UMAP
gives more control than t-SNE over how packed low-dimension points are at the end.

The second step represented on Figure 5 illustrates the intermediate step where B is closer to A and the
two clusters start to appear in low-dimension representation.

4Spectral embedding is a dimensionality reduction technique that leverages the spectral properties of a similarity or affinity
matrix derived from the data



RD - S2 – Pierre LAGUE & Ilian VANDENBERGHE - Université de Lille 1 4

Figure 5: Second step, iteratively moving B maximizing it’s low dimensional score on the A t-distribution and minimizing it’s low
dimensional score on the E t-distribution.

In order to know where B should go, and when to stop, UMAP introduces a cost function optimized with
Stochastic Gradient Descent5. It is known as cross-entropy and it is defined as follows:

Loss =
N∑
i=1

N∑
j=1

(
Pij log

(
Pij

Qij

)
+ (1− Pij) log

(
1− Pij

1−Qij

))
• N is the total number of data points.

• PAB is the value of the membership strength between data points A and B in the original high-dimensional
space.

• QAB is the value of the membership strength between data points A and B in the low-dimensional space.

Each value PAB and QAB are computed with Z, previously introduced. This loss is used on points E (resp.
A) and B as well in order to move B "away" from E (resp. "closer" to A). Cross-entropy loss is used in UMAP
because it effectively captures the difference between pairwise similarities of data points in the original high-
dimensional space and their representations in the low-dimensional space. By minimizing the cross-entropy loss
through stochastic gradient descent, UMAP can learn a low-dimensional embedding that preserves the local
structure of the data while reducing dimensionality. The SGD iterative process uses this loss function and places
B such that the loss is minimized.

Finally, the third step in Figure 6 illustrates the final low-dimension representation after each point has
been moved to maximize it’s low dimension score. After a certain amount of iterations, we have a
low-dimension representation of the high-dimension clusters.

Figure 6: Final state of the low-dimension representation.

A simplified version of the UMAP pseudo-algorithm is described in pseudo-algorithm 1

5Stochastic Gradient Descent, is a fundamental optimization algorithm commonly used in machine learning for minimizing a
loss function.



RD - S2 – Pierre LAGUE & Ilian VANDENBERGHE - Université de Lille 1 5

Algorithm 1 UMAP Algorithm
1: Input: High-dimensional data X, number of dimensions ncomponents, number of nearest neighbors k
2: Compute high-dimensional scores.
3: Optimize σ to have a perfect fit on the similarity curve
4: Initialize low-dimensional embedding Y randomly
5: for t = 1 to maximum iterations do
6: Compute fuzzy set Φ based on Y
7: Update learning rate αt

8: for all data point pairs [a, b] do
9: Compute gradient ∇(log(Φ)) and ∇(log(1− Φ))

10: Update ya using stochastic gradient descent: ya ← ya + αt · ∇(log(Φ))(ya, yb)
11: end for
12: end for
13: return Low-dimensional embedding Y

Section 3: UMAP Practical Experiments

In this study, we aimed to evaluate the efficacy of UMAP (Uniform Manifold Approximation and Projection)
dimensionality reduction technique on benchmarked datasets. The experimental setup followed a rigorous
protocol to assess the quality of dimensionality reduction based on the score of classification algorithms. We
selected benchmarked datasets from diverse domains (tabular data and images) to ensure a comprehensive
evaluation. These datasets encompassed a range of characteristics, including varying dimensions, sample sizes,
and class distributions, thus providing a robust testbed for our analysis.

Throughout our experiments we will try to observe the effect of various hyper-parameters as depicted in 2 :

• k : the number of neighbors initially chosen, n_neighbors=15 by default in python.

• α and β : used to control how tightly packed the points will be in low-dimension α=a=0 and β=b=0 by
default in python.

(1) UMAP vs Structured Data The Palmer Penguin dataset is a comprehensive collection of mor-
phological measurements and demographic data pertaining to three species of penguins inhabiting the Palmer
Archipelago, Antarctica. The dataset comprises measurements from 344 penguins, encompassing three distinct
species: Adelie (Pygoscelis adeliae), Chinstrap (Pygoscelis antarctica), and Gentoo (Pygoscelis papua). These
measurements include various morphological attributes such as bill length, bill depth, flipper length, and body
mass, along with categorical variables like sex and species.

The goal here is to try and reduce the dimension from 4 (number of penguins’ physical attributes) to 2 in
order to have a single plot keeping the high-dimensional informations. By applying UMAP on this dataset, we
are able to reach such result, as depicted on Figure 7. We can see that the packing parameters not only clarify
the low dimension information, they also improve it. However, the third plot on Figure 7 shows that the blue
and orange clusters are mixed together, which shows such hyper-parameter should be dealt with carefully. Here,
the number of neighbors did not significantly change the result.

Figure 7: Low Dimension projection of the penguin dataset with different values for packing parameters a and b. k = 15 in all
experiments.



RD - S2 – Pierre LAGUE & Ilian VANDENBERGHE - Université de Lille 1 6

The plots indicate that optimal parameters, to maximise comprehension and scoring would be α = 10
and β = 5 with k = 15. This way, we have a representation that has linear properties, with clusters that
do not overlap. This experiment shows that UMAP can achieve significant performance on keeping the high-
dimensional information throughout it’s dimension reduction process on structured data. Using the score of
supervised algorithm classification methods gives us an insurance in the quality of the dimension reduction. We
aim to find a similar score before and after the reduction. We can use the reduced-dimensional representation
obtained by UMAP as input features and train a classifier (such as kNN or SVC) to predict the labels. We
can then evaluate the classifier’s performance using metrics like accuracy. This evaluation provides insight
into how well the reduced-dimensional representation preserves the discriminative information present in the
original high-dimensional data. Both SVC (C-Support Vector Classification) and KNN (K-nearest neighbors)
scores displayed in Table 1 show that the high-dimensional information are well represented in low dimension.

Algorithm score/Projection SVC KNN
High-Dimension 0.71 0.76
Low-Dimension 0.70 0.75

Table 1: Evaluation of the low-dimensional projections on the Penguins Dataset compared to high-dimensional score.

(2) UMAP vs Unstructured Data The MNIST Digit dataset, consisting of handwritten digit images,
and the Olivetti Faces dataset, comprising grayscale facial images, represent two diverse yet prominent datasets
frequently employed in machine learning and computer vision research on unstructured data. Leveraging UMAP,
we aimed to uncover meaningful low-dimensional representations of these datasets while preserving their inherent
structures. Both datasets being unstructured data, their initial high dimensional representations are extremely
complex. In fact their initial shapes are (1797, 64) for the MNIST Digits dataset and (400, 4096) for the
Olivetti Faces dataset. Reducing the dimension to 2D and applying an inverse transform to assess the
quality of the information that was reduced is a way of evaluating UMAP efficiency.

When applying UMAP on the MNIST dataset for a low-dimensional representation in 2D we obtain the
following result :

Figure 8: Low-Dimension 2D projection of the MNIST Digit dataset with different values for packing parameters a and b and for
the number of neighbors k

The results showcased in Figure 8 illustrate one of cases where the dimension reduction is too low. In
fact, each of the plots showcase clusters that are overlapping. In that case, we can’t understand how the
data is clustered. UMAP allows us to choose the dimension in which we project our low-dimensional data
(parameter n_components in python). We will keep only the first plot in Figure 8, since it has the most clear
representation of the clusters. It seems the parameters by default in the UMAP instantiation give optimal
packing representation. By adapting the n_components parameter from 2 to 3 for a 3D representation, we can
obtain a clearer representation with only 1 additional dimension as shown in Figure 9, where we can clearly see
the different cluster each corresponding to a digit. UMAP allows us to grasp the structure of high-dimensional
data in low dimension, this step can greatly improve data complexity before feeding it to a machine learning
model (supervised or unsupervised learning). We’ve managed to reduce the number of attributes to 2 instead
of 64, with a slight decrease in clustering score, as shown in Table 2, this highlights the UMAP effectiveness to
create a low-dimensional embedding that preserves the essential topological features of the original data.

When applying UMAP on the Olivetti Faces dataset for a low-dimensional representation in 2D we obtain
the same nature of results as for the MNIST dataset (Figure 8, fuzzy information). In 2D, the dimension is too
low to fully grasp the complex nature of the images via a plot. However, we can apply an inverse transformation
and see what result is returned in order to assess the quality of the dimension reduction. The inverse transform
operation consists in producing a high dimension representation from a low dimension embedding. This can be



RD - S2 – Pierre LAGUE & Ilian VANDENBERGHE - Université de Lille 1 7

Figure 9: Low-Dimension 3D projection of the MNIST Digit dataset with values a=0, b=0 and k=15.

Algorithm score/Projection SVC KNN
High-Dimension 0.95 0.98
Low-Dimension 0.94 0.97

Table 2: Evaluation of the low-dimensional projections on the MNIST Dataset compared to high-dimensional score.

done by fitting the data with UMAP using only fit and not fit_transform to retain the trained model for
later generating new digits based on samples from the embedding space. Each point on the generated grid point
is a two dimensional point lying somewhere in the embedding space. The inverse_transform method will
convert this into an approximation of the high dimensional representation that would have been embedded into
such a location. If the inverse transformation from the low-dimensional representation returns clear faces (or
handwritten digits) as shown in Figure 10, then we can be sure that the dimension reduction process successfully
describe the high-dimensional information.

Figure 10: Inverse transform operation on the Olivetti Faces Dataset and MNIST Digit Dataset. From the low-dimensional
representation we can still see that the image information is roughly preserved.

For each of these datasets, we’ve been able to reduce the dimension from above 60 to 3 or even 2 dimension
representations that still hold a majority of the information contained in the high-dimensional projection. We’ve
seen that the number of neighbors and packing parameters also influence the quality of the projection as well
as the time needed to compute the low-dimensional representation.



RD - S2 – Pierre LAGUE & Ilian VANDENBERGHE - Université de Lille 1 8

Section 4: Efficiency comparison with other techniques

In the context of this study, we decided to compare other common dimension reduction techniques to UMAP.
This comparison will be done on the same dataset (Fashion-MNIST, complex data). The algorithms are the
following : PCA (Principal Component Analysis) is a linear dimensionality reduction technique that aims to
capture the maximum variance in the data by projecting it onto orthogonal axes, reducing the dimensionality
while preserving the global structure. MDS (Multidimensional Scaling) constructs a lower-dimensional repre-
sentation of data by preserving pairwise distances or dissimilarities between data points, aiming to maintain the
global structure of the data. t-SNE (t-distributed Stochastic Neighbor Embedding) focuses on preserving local
similarities between data points in the high-dimensional space by embedding them into a lower-dimensional
space, often used for visualizing clusters and preserving local structures.

Figure 11: Comparison of three common dimension reduction techniques : PCA, T-SNE, UMAP and MDS. Plots showcase the
difference of efficiency between UMAP and T-SNE, but show a similarity between UMAP and PCA.

The results depicted in Figure 11 exhibit a comparative analysis of dimensionality reduction techniques
across increasing dataset sizes. Initially, PCA, T-SNE, and UMAP demonstrate comparable efficiency relative
to MDS as the dataset sizes escalate. However, as the dataset size further increases, T-SNE exhibits diminished
efficiency, thereby positioning UMAP and PCA in the subsequent plot. Within this context, PCA demonstrates
a slight superiority over UMAP, particularly noticeable with a substantial dataset size. For large datasets, MDS
and T-SNE are, in conclusion, not the most efficient, where as UMAP and PCA show some convincing results
in terms of dimension reduction on complex data.

Section 5: Conclusion

In conclusion, this study contributes to a deeper understanding of UMAP’s role in dimensionality reduction,
thereby enhancing our analytical capabilities for interpreting high-dimensional datasets effectively.

References

[1] Allen Hatcher. Algebraic topology. , 2005.

[2] John M Lee. Riemannian manifolds: an introduction to curvature, volume 176. Springer Science & Business
Media, 2006.

[3] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and projection
for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.


	Introduction
	UMAP Algorithm
	UMAP Practical Experiments
	UMAP vs Structured Data
	UMAP vs Unstructured Data

	Efficiency comparison with other techniques
	Conclusion

