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Abstract

This report outlines the work completed during my apprenticeship, which was part
of my Master’s program in Computer Science and Machine Learning at the Uni-
versity of Lille 1 (FST). In my role as a Machine Learning Engineer at a FinOps
consulting firm, I was tasked with designing and implementing automated solutions

to dynamically manage and optimize our clients’ cloud infrastructures.

My work revolved around two key, complementary projects. The "VM Reser-
vation" project focused on building a dynamic recommendation engine for virtual
machine reservations based on predictive forecasting. The "Alpha Stability" project
involved developing a model to estimate and quantify the workload stability of a

virtual machine, providing a critical metric for strategic decisions.

Through these projects, I honed advanced technical skills in data analysis, predic-
tive modeling, hyperparameter tuning, and MLOps fundamentals. This experience
also enhanced my problem-solving abilities, autonomy, and deep understanding of
the business imperatives in the FinOps domain. This document provides a detailed

account of the methodologies, results, and key takeaways from my work.

Key Words:

e GreenlT

e FinOps

o Forecasting

e Supervised Learning
e Data Science

e Machine Learning






Contents

0.1 Legal Notice. . . . . . . . .. .

1 Introduction

1.1 Context of the Apprenticeship . . . . . . . .. .. ... ... .....

1.1.1

1.1.2
1.1.3

Sudo Group . . . . . . ...
Industry Sector and Positioning . . . . . . .. ... ... ...
Service Offerings and Target Clientele . . . . . .. ... ...
Internal Organization . . . . ... ... ... ... .....
Presentation of Roles within Sudo Group . ... ... .. ..
Apprenticeship Advisor . . . .. ... ... ... ... ...
Apprenticeship Mission . . . . ... ... ... ........
Introduction to My Host Department: The Data Team . . . .

Main Missions of the Department . . . . . . .. .. ... ...

1.2 Thesis Overview . . . . . . . . . . .

2 Background
Cloud Cost: Flexibility vs. Financial Waste . . . . . . .. ... ...

2.1

2.2
2.3
24

2.1.1

Quantifying Cloud Value . . ... ... ... ... ......

Sustainability Dimension: Carbon Footprint . . . . . . . . ... ...

Need for Dynamic Intelligent Solutions . . . . . . . . ... ... ...
Related Works . . . . . . . . o

3 VMReservation
3.1 Motivations . . . . . . . . ..

3.2 Preliminary Considerations . . . . . ... ... ... .. ... ...,

3.3

3.2.1
3.2.2
3.2.3
3.24
3.2.5
3.2.6
3.2.7

Details on the Data . . . . . . .. ... .. ... ... ...,
Understanding and Processing Cloud Billing Data . . . . . .
Data Filtering and Scope Refinement . . . . . . .. .. .. ..
Environment Normalization . . . . . . ... ... ... ....
Generating vCPU Information . . . .. ... .. ... ....
Core Metric Calculation . . . . . .. ... ... ... .....

Aggregating Candidates for Reserved Instances . . . . . . ..

Machine Learning Approach . . . . . . . . ... .. ... .. .....

3.3.1

Initial Combination-Specific Modeling Strategy . . . . . . ..

© © 0 o 0o

10
10
10
11
11
11

13
13
14
14
15
16



4 Contents
Tests with Facebook Prophet . . . . . .. ... .. ... ... 27
Transition to XGBoost: A More Robust Solution . . . . . . . 27
Re-Evaluation the Combination-Specific Strategy . . . . . . . 28
3.3.2 Transition to a Global Forecasting Model and Methodological
Refinements . . . . . . .. .. oo 29
Initial Challenges with a Global Model . . . . . . . . ... .. 30
Methodological Adaptations for the Global Model . . . . .. 30
Addressing Data Scarcity through Data Augmentation . . . . 31
Hyperparameter Optimization . . . .. ... ... ... ... 32
Performance Assessment of the Global Model . . . . . . . .. 33
3.3.3 Scalability Challenges for Production Deployment . . . . . . 36
Proliferation of Features in Diverse Datasets . . . .. .. .. 36
Mitigating Scalability Issues and Enhancing Efficiency . . . . 37
3.3.4 Results of the Data and Feature Filtering Strategy . . . . . . 37
3.4 Reserved Instance Recommendation Strategy . . . .. .. .. .. .. 39
3.4.1 Bridging vCPU Usage Forecast and Actionable Recommenda-
tions . . . . .. 40
The Minimum Lower Bound (MLB) . . ... ... ... ... 40
Incorporating Application-Environment Stability Indicators . 41
3.4.2 Reflection on the Stability Indicator . . . . ... .. .. ... 42
3.4.3 Incorporating Existing Reservations . . . ... ... ... .. 44
3.4.4 Deriving and Allocating the Global RI Recommendation . . . 44
Formulation of the Initial Global RI Recommendation . . . . 44
Formulation of the Refined Global RI Recommendation . . . 45
3.4.5 Allocation of 1-Year and 3-Year RI Terms . . . . . ... ... 45
3.4.6 Estimating Financial Gain . . . . . . . ... ... ... .... 46
Mlustrative Application and Financial Impact . . . . . .. .. 48
4 Alpha Stability 49
4.1 Context . . . . . . . e e 49
4.2 Detailsonthe Data . . . ... ... ... .. ... ... ....... 50
4.3 Extracting Relevant Tag Keys . . . . . . .. .. ... . ... 51
4.3.1 Baseline Model: Naive Bayes Classifier . . . . . .. .. .. .. 51
4.3.2 XGBoost: A More Robust Solution . . . . . . ... ... ... 52
4.3.3 Results and Evaluation . . .. ... ... ... ... ..... 53
4.4 Normalizing Tag Values . . . . . ... ... ... ... .. ... 95
4.4.1 Initial Approach and Challenges . . . .. ... ... ... .. 55
4.4.2 Simplified Approach with Unsupervised Clustering . . . . . . 56
4.4.3 Data Processing and Clustering Process . . . . .. .. .. .. 57

Hierarchical Clustering . . . . . . . ... .. ... ... .... 57



Contents 5
4.44 Results and Evaluation . . . ... ... ... ... .. .... 59

4.5 Normalizing Environments . . . . . . . . .. .. .00 60
4.5.1 Extracting Relevant Environment Information . . .. .. .. 60

4.5.2 Results of the Environment Extraction . . . . . .. .. .. .. 63

4.6 Estimating Application-Environment Stability . . . . . . . ... ... 64
4.6.1 [Initial Approaches . . . . . . . . ... ... ... ... 64

4.6.2 Refined Approach: Dual Horizon Model . . . . . . . ... .. 65

4.6.3 Results and Evaluation . . ... ... ... ... ....... 66

5 Research Perspective 71
5.1 VMReservation . . . . . . . ... 71
5.1.1 Advanced Forecasting Model Development . . . . . . ... .. 71

5.1.2 Model Deployment and Maintenance . . . . . . . .. .. ... 73

5.1.3 Confidence of Recommendations . . ... ... ... ..... 73

5.2 Alpha Stability . . . . .. ... 74
5.2.1 Enhancing Tag Understanding . . . .. ... ... ... ... 74

5.2.2 Explainability and Causality . . .. ... ... ... ..... 74

6 Conclusion 75

References

79



6 Contents

0.1 Legal Notice

This thesis was prepared in the course of an apprenticeship with Sudo Group, and
all work, research, data, and findings contained herein constitute a work-for-hire.
As such, this document and its entire contents are the sole and exclusive intellectual
property of Sudo Group. This work is confidential and may not be reproduced,
distributed, or disclosed in any form, in whole or in part, without the express prior

written authorization of Sudo Group.

Sudo Group © 2025 — All rights reserved



Chapter 1

Introduction

This document is submitted as part of my final year in the Master of Computer
Science program, specializing in Machine Learning, which I am completing through
an apprenticeship at the University of Lille 1. The document aims to provide a
reflective and objective demonstration of the work and methodology I undertook
during this period. It is not simply a report on my work, but rather an analysis
of what has been achieved—and what has succeeded or failed—in the process of
working on the following subject: Leveraging Machine Learning for Dynamic

and Intelligent Cloud Commitment Recommendations

It was within this academic framework that I joined Sudo, a consulting firm
founded in 2020 specializing in digital transformation and data. Sudo distinguishes
itself through its advanced expertise in FinOps and Green IT, supporting Infor-
mation Systems Departments (ISDs) and other companies that wish to innovate
while optimizing their costs and reducing the environmental and social impact as-
sociated with their use of Cloud services. Beyond its consulting activities, Sudo
is also developing a proprietary SaaS FinOps platform designed to automate these

optimizations.

As an Apprentice ML, Engineer within Sudo’s Data team, my objectives for this
first year were multifaceted. On a professional level, the primary goals were to fully
integrate into the company’s projects and culture while building practical skills in

data collection, analysis, and modeling. The overarching ambition was to actively
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contribute to Sudo’s core mission: developing digital solutions that empower clients

to control their Cloud expenditures and diminish their carbon footprint.

1.1 Context of the Apprenticeship

There was two aim for this internship. The first and main one, was to finance my
studies. The second one was to figure out which type of PhD I was to follow next
year. I was hesitant between a fully academic PhD in a research unit, or a CIFRE

PhD where I would be working in pair with a separate company.

1.1.1 Sudo Group

Founded in 2020, Sudo is a young and dynamic consulting firm that has quickly
established itself as an innovative player in the Cloud Computing ecosystem. Despite
its current size of seven employees, the company has a clear ambition: to accelerate
the technological transformation of its clients. Sudo’s primary mission is twofold: on
one hand, to optimize its clients’ Cloud architectures to reduce their costs (FinOps),

and on the other, to decrease their environmental and social impact (Green IT).

Sudo’s culture is centered on innovation, advanced technical expertise, contin-
uous optimization, and a strong commitment to environmental responsibility. The
company’s values are reflected in its pursuit of tailor-made, results-oriented solutions

for its clients.

Industry Sector and Positioning

The Cloud Computing market is experiencing hypergrowth, with a projected value
exceeding $700 billion in 2024 and sustained growth momentum. However, this
rapid expansion comes with significant structural challenges for businesses. It is
estimated that $300 billion is wasted annually worldwide on Cloud commitments,
often due to erroneous forecasts or a slower-than-anticipated migration to the Cloud.
Simultaneously, approximately 50% of companies struggle to understand and pre-
dict their Cloud usage as they expand their infrastructure or adopt particularly
resource-intensive technologies, such as Artificial Intelligence. Finally, a large ma-
jority—mnearly 80% of companies—admit to having difficulties in comprehensively

and accurately measuring the carbon footprint of their Cloud applications.

It is in this dynamic environment and in the face of these critical issues that
Sudo positions itself. Sudo operates at the crossroads of digital transformation,
Data, and more specifically, FinOps (Financial Optimization of Cloud Operations)

and Green IT (Sustainable IT). This positioning is particularly relevant in a context
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where companies seek both to control their Cloud spending and to meet sustainabil-
ity imperatives. The company does not merely provide consulting services but is
also developing a SaaS FinOps platform, which aims to automate the optimization
of costs and the carbon footprint of applications running on the Cloud, without

requiring deep technical expertise from the user.

What is FinOps?

FinOps is a discipline and a cultural practice that aims to maximize the business
value of the Cloud. It involves helping organizations understand their Cloud
costs, make informed spending decisions, and optimize their resource utilization.

This requires collaboration between financial, technical, and business teams, and

is often structured around three phases: Inform, Optimize, and Operate.

Faced with the rapid evolution of Cloud technologies and the growing demand
for sustainable solutions, Sudo encounters stimulating challenges, such as the need
to maintain constant technological surveillance. However, it also seizes significant
growth opportunities by providing concrete answers to these problems of waste,

complexity, and environmental impact.

Service Offerings and Target Clientele

Sudo’s offerings are structured around audit, support, and training missions. These
services are designed to provide customized, results-oriented solutions, enabling
clients to realize their full technological, economic, social, and environmental po-
tential. Sudo’s target clientele primarily consists of Information Systems Depart-
ments (ISDs) and companies of all sizes that are engaged in innovation and wish to

optimize their use of Cloud services.

Internal Organization

With a small team, Sudo’s organization is agile and promotes direct collaboration.
The typical project process at Sudo begins with a phase of identifying and defining
client needs, often led by Mr. Mike DOUIEB, a FinOps expert and the founder of
Sudo. These needs are then translated into project objectives for the Data team,

which takes charge of designing and developing the technical solutions.

Although there is no complex formal organizational chart due to the structure’s
size, roles are clearly defined, with leadership provided by Mike DOUIEB and spe-
cialized operational teams, including the Data team. Communication is fluid and

decision-making channels are short, allowing for great reactivity.
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Presentation of Roles within Sudo Group

The lifecycle of a project at Sudo involves the collaboration of several areas of

expertise:

o Product & Strategy Expertise (FinOps/Green IT): This role is central
to defining the vision for solutions, technical expertise, and product manage-

ment. Mr. Mike DOUIEB embodies this expertise, particularly in the areas
of FinOps and Green IT.

e Cloud Development and DevOps Consultant: Focused on providing
technical support to clients in the implementation and optimization of Cloud

solutions.

e Data Science & Digital Transformation Consultant: Assists clients in
leveraging their data, defining data strategies, and implementing transforma-

tion projects.

o Data Scientist / Machine Learning Engineer (my role): Responsible for
the collection, processing, analysis, and modeling of data to develop solutions

and insights.

Apprenticeship Advisor

My apprenticeship supervisor is Mike DOUIEB, the founder of Sudo. In his capacity
as supervisor, he is responsible for setting the objectives for my projects and ensuring
their relevance to both client requirements and the company’s strategic goals. My
advancements in the various subjects I worked on are supported through his guidance
on technical and business matters, the delegation of increasing responsibilities, and

feedback.

1.1.2 Apprenticeship Mission

As an apprentice Data Scientist / ML Engineer, my role is at the heart of Sudo’s
strategy. I am primarily involved in the data value chain: from data collection and
preparation to its modeling (statistically or via ML algorithms) and exploitation. My
objective is to transform raw data into actionable information and digital solutions
that directly contribute to the company’s mission: reducing the costs and carbon
footprint of its clients’ Cloud infrastructures, specifically virtual machine usage on
the cloud. I am therefore required to interact with data from various Cloud providers

(Azure, GCP, AWS) and to develop tools and models to analyze and optimize them.
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1.1.3 Introduction to My Host Department: The Data Team
Main Missions of the Department

The Data Team, within which I work, is the technical engine of the solutions devel-

oped by Sudo. Its main missions are to:

e Develop and maintain data analysis scripts to evaluate Cloud consumption

and the financial gains from our recommendations.

o Design, train, and deploy Machine Learning models to predict trends (such as

virtual machine usage on the cloud) or identify optimization opportunities.

e Contribute to the development of Sudo’s SaaS FinOps platform by integrating

features resulting from the team’s R&D work.

e Conduct a rigorous scientific analysis of the results obtained, documenting the
methodologies employed and the conclusions, in accordance with an engineer-

ing approach.

1.2 Thesis Overview

During this work we will go over 2 major parts of my work at Sudo. The first one
is the essence of my work: VMReservation. This chapter will present the complete
methodology and thought process that we went through to come up with the first
stable version of the core feature of our product that allows a dynamic and intelligent
recommendation system for Reserved Instances (RI) in the Azure cloud environment.
I will then present Alpha Stability , which works hand in hand with VMReservation
and will present the interesting contribution it represents. AlphaStability aims at
estimating the workload of a virtual machine running a certain application in a

certain working environment.

The VMReservation chapter centers on a core machine learning problem: the
time series forecasting of cloud resource consumption. Specifically, the objective is
to predict the future trajectory of a single, scalar metric: the Daily vCPU Usage
Intensity (I) with supervised machine learning. As we will see later in this work, this
metric represents the aggregated average vCPU usage for a particular combination
of resource attributes (e.g., VM series, location, environment) on a given day. The
task is therefore to forecast the time series constituted by the sequence of these [
values over a defined future horizon. This predicted time series of Daily vCPU Usage
Intensity (often referred to conceptually as '"VM Usage’ in subsequent figures and
discussions) forms the essential foundation upon which the data-driven Reserved

Instance recommendation logic is built. This project comes hand in hand with
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feature engineering tasks and model optimisation in order to have a 6 month forecast

of the intensity I that offers actionable reservation recommendations.

The Alpha Stability analysis, detailed in the second chapter, addresses a related
but distinct problem of quantifying historical usage predictability to provide sup-
plementary context for these primary consumption forecasts. The aim is normalize
application and environment names to build a reference catalog working as a key
value system. The keys, a pair of application name and environment name, will
refer a value: the stability of the workload of that application running on the given

environment.



Chapter 2

Background

Cloud computing has fundamentally reshaped the IT landscape, offering unprece-
dented scalability, flexibility, and access to advanced technologies. Businesses in-
creasingly migrate workloads to major cloud providers like Microsoft Azure, Amazon
Web Services (AWS), and Google Cloud Platform (GCP) to leverage these advan-
tages and shift from capital expenditure (CapEx) on physical hardware to opera-
tional expenditure (OpEx) based on consumption. However, this consumption-based

model, while flexible, introduces significant challenges in cost management.

2.1 Cloud Cost: Flexibility vs. Financial Waste

The pay-as-you-go pricing model (paying for a resource as you use it) offers maximum
flexibility but can lead to unpredictable and escalating costs, especially for stable,
long-running workloads. To address this, cloud providers offer commitment-based
purchasing options, such as Azure Reserved Instances (RIs) and Savings Plans.
These mechanisms provide substantial discounts (often up to 72% compared to on-
demand rates) in exchange for a commitment to use specific resources (like Virtual
Machines - VMs) or a certain amount of compute power for a defined term, typically

one or three years.
While these commitments are powerful levers for cost optimization, they intro-

duce a new risk: waste. Organizations often struggle with accurately forecasting

their future cloud infrastructure needs. Factors like evolving application demands,

13
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unforeseen project delays, shifting business priorities, and the inherent complexity
of cloud billing data make precise prediction difficult. This imprecise understanding
leads to significant financial inefficiency. In a 2023 report by Infosys, potentially
over $300 billion in cloud commitments are wasted annually due to mismatches be-
tween committed resources and actual usage. This wasted spend directly impacts
profitability and represents a major hurdle in maximizing the financial benefits of
the cloud.

2.1.1 Quantifying Cloud Value

Effective cloud financial operations/managment (often termed FinOps) hinges on

optimizing cloud spend and demonstrating clear value. Key financial metrics include:

o Total Cost of Ownership (TCO): Comparing the cost of running workloads
in the cloud versus on-premises requires careful TCO analysis. Commitment

discounts are crucial for making cloud TCO favorable for many workloads.

o Return on Investment (ROI): Businesses need to justify cloud investments.
Optimized spending through intelligent commitments directly improves the
ROI of cloud initiatives.

o Budget Predictability: Fluctuating on-demand costs complicate financial plan-
ning. Converting baseline usage to fixed-cost Rls or Savings Plans enhances
budget predictability, although inaccurate commitments can negate this ben-
efit.

e Cost Savings: Directly measurable savings achieved by leveraging discounts
compared to pay-as-you-go rates are a primary driver for commitment strate-

gies.

Mastering commitment strategies is therefore essential not just for saving money,
but for achieving broader financial control and demonstrating the strategic value of

cloud adoption.

2.2 Sustainability Dimension: Carbon Footprint

Beyond financial considerations, the environmental impact of cloud computing is
gaining increasing attention. Data centers are significant consumers of electricity,
contributing to global carbon emissions. While cloud providers invest heavily in
renewable energy and efficient operations, the sheer scale of cloud infrastructure

necessitates optimization at the user level as well.
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Wasted cloud commitments often translate to underutilized or idle reserved re-
sources. Even if paid for, these resources consume energy within the data center.

By accurately predicting usage and right-sizing commitments, organizations can:

e Reduce Energy Consumption: Ensure that provisioned resources closely match

actual demand, minimizing energy wasted on idle capacity.

e Lower Carbon Footprint: Directly decrease the carbon emissions associated

with powering and cooling unnecessary infrastructure.

e Align with ESG Goals: Contribute to corporate Environmental, Social, and
Governance (ESG) objectives by demonstrating responsible resource manage-

ment.

Optimizing cloud commitments is thus intrinsically linked to sustainability. Effi-
cient resource utilization is not only financially prudent but also environmentally

responsible.

2.3 Need for Dynamic Intelligent Solutions

The core challenge lies in accurately "knowing" future usage patterns. Traditional
methods for managing commitments often rely on manual analysis, static rules, or
basic heuristics provided by cloud vendor tools. These approaches frequently lack the
sophistication to handle the inherent volatility and complexity of cloud usage data,
making commitment decisions risky and prone to failure. This context highlights
a critical need for more dynamic, adaptive, and intelligent approaches. Machine
Learning (ML) offers a promising path forward. By leveraging ML algorithms, par-
ticularly time-series forecasting techniques, organizations can analyze vast amounts
of historical consumption data, identify complex patterns, predict future needs with

greater accuracy, and factor in various influencing variables.

This thesis explores precisely this opportunity: leveraging Machine Learning
to develop a system that provides dynamic and intelligent recommendations for
Azure Virtual Machine commitments. The goal is to move beyond static, reactive
cost management towards a proactive, data-driven strategy that maximizes financial
savings through optimized Rls, enhances budget predictability, and implicitly sup-
ports environmental sustainability by promoting efficient resource utilization. The
development of such a system addresses the technological gap in mastering cost

optimization via commitments in complex cloud environments.
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2.4 Related Works

Research on leveraging machine learning (ML) for dynamic and intelligent cloud
commitment recommendations intersects several domains: ML-driven decision sup-
port, cloud resource optimization, and recommendation systems. While direct stud-
ies on "cloud commitment recommendations" are limited, related works address ML
applications in cloud environments for decision-making, resource allocation, and

policy recommendations.

ML and Cloud Computing for Decision Support

A recent study explores how ML, artificial intelligence (AI), and cloud computing
can be combined to build scalable, flexible, and effective decision support systems
for fraud detection in the insurance sector. The paper proposes a framework that
leverages ML for accurate predictions, Al for decision automation, and cloud com-
puting for scalability, ultimately providing actionable recommendations to insurers
[1].

Another work presents a decision support system for crop recommendations us-
ing ML classification algorithms and cloud data. The system analyzes large-scale
agricultural datasets in the cloud to provide personalized, context-aware recommen-
dations to farmers, demonstrating the potential of cloud-based ML for dynamic

recommendation tasks [2].

Cloud-Based Policy and Resource Recommendation

Research on cloud-based ML for flood policy in Makassar, Indonesia, utilizes multiple
data sources and ML models on cloud platforms to generate policy recommenda-
tions for urban planning and disaster mitigation. This work highlights the value of

integrating ML and cloud resources for dynamic, data-driven policy advice [3].

ML in Cloud Environments

A study demonstrates the deployment of ML models in the cloud for medical image
analysis, emphasizing the efficiency and workflow improvements achieved through
cloud-based ML. The research suggests that cloud integration enables scalable and
dynamic decision support, which is relevant for commitment recommendations in

other domains [4].

Similarly, ML models, such as XGBoost, have been used in cloud environments
to predict air quality, integrating real-time data and providing actionable recommen-
dations for users. This approach showcases how ML and cloud computing together

facilitate timely, adaptive recommendations based on dynamic data [5].
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Cloud Provider Integrated Recommendation Features

Major cloud providers, such as AWS, Azure, and Google Cloud, offer built-in tools
and recommendation engines to help customers choose commitment plans and opti-
mize resource usage. These solutions typically leverage proprietary algorithms and
historical usage data to suggest reserved instances, savings plans, or other long-term
commitments. While these tools provide convenience and some degree of automa-
tion, they are fundamentally designed within the provider’s ecosystem and often
prioritize the provider’s financial interests. As a result, recommendations may be
biased toward options that maximize provider revenue, such as encouraging over-
commitment or steering users toward products with higher margins. This inherent
bias means that while provider-driven recommendation systems can be useful, they
may not always align perfectly with the customer’s optimal cost-saving strategy
or business objectives [6, 7]. Independent or hybrid approaches, which incorporate
user-centric data and third-party analytics, are increasingly being explored to ad-
dress these limitations and provide more objective, tailored recommendations for

cloud commitments.

That being said, while direct literature on "dynamic and intelligent cloud com-
mitment recommendations" is scarce, the reviewed works collectively demonstrate
the feasibility and effectiveness of leveraging ML in cloud environments for dynamic,
data-driven recommendation and decision support systems. These studies provide a
strong foundation for further research in applying ML for cloud commitment opti-
mization and recommendations. This brief overview also emphasizes the novelty of
our work, and how we place ourselves in an effort to produce non-biased solutions

that is aimed at the client’s needs first.






Chapter 3

VMReservation

In this chapter, we provide an overview of the process that led to the first stable
version of our Virtual Machine Recommendation system. We will focus on the key
development phases, the rationale behind our design choices, and the main challenges

encountered along the way.

3.1 Motivations

As mentioned in Chapter 2, commitment is one of the most powerful levers for cost
optimization in the Cloud. However, due to an imprecise understanding of usage as
well as delays in Cloud migration projects, more than 300 billion dollars in Cloud
commitments are wasted each year (source: Cloud Radar 2023 - Infosys). The main
technological padlock to mastering cost optimization via commitments is “knowing”
the future usage of one’s cloud infrastructure. In fact, to this day, it is hard to have a
very precise understanding of cloud usage and the various external or internal factors
that could make it change from one day to the next. Some technologies such as time
series forecasting exist to iteratively predict the future based on past data, and in
some cases the models yield significant results, making the future not so uncertain.
But in the case of cloud usage, the difficulty lies within the data. In fact, cloud
billing data is extremely complex, to understand, and to manipulate. Building a
model in itself isn’t hard, but feeding it with the appropriate data, derived features
and extracting practical results out of the model’s output is the real challenge that

we aim to illustrate in this work.

19
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Our strategy is to try and incorporate a forecasting and recommendation engine
designed to optimize Microsoft Azure Virtual Machine (VM) utilization. By ana-
lyzing historical cloud usage patterns and predicting future needs for specific VM,
this system would identify prime candidates for Azure Reserved Instances (RlIs).
Adopting these recommendations would present significant, quantifiable advantages

in one critical area: financial expenditure.

As specified in Section 2, the total expenditure of wasted commitments goes
up to 300 billion dollars. The primary financial driver for utilizing Azure Reserved

Instances is substantial cost reduction illustrated by the following points:

1. Discounted Rates: Azure offers significant discounts (often up to 72% com-
pared to pay-as-you-go rates, varying by term, region, and VM type) for
committing to use specific VM resources for a 1-year or 3-year term. Our
recommendation feature identifies workloads with consistent usage patterns
that are ideal for maximizing these savings. By reserving capacity for these
predictable workloads, the client transitions from premium, flexible pricing to

heavily discounted, committed pricing.

2. Enhanced Budget Predictability: Pay-as-you-go VM costs can fluctuate based
on usage variations. Committing to RIs for baseline workloads transforms a
variable operational expense into a more predictable, fixed cost for the dura-
tion of the term. This greatly aids financial planning, forecasting, and budget
management for cloud infrastructure. However, the lack of dynamic and “in-

telligent”, data-driven methods make this process risky and prone to failure.

3. Optimized Cloud Spend: In theory, the system pinpoints opportunities where
sustained usage makes pay-as-you-go economically inefficient. By converting
these specific, identified VMs to Rls based on data-driven forecasts, we ensure
that budget is allocated optimally, paying the lowest possible price for required,

long-term compute capacity.

The VM reservation recommendation system would serve as a critical tool for
strategic cloud management. It would directly translate forecasted usage into ac-
tionable financial savings by leveraging Azure’s Reserved Instance pricing model.
This principle is destined to be combined with other reservable computing units
(databases, disks etc.). It could also handle saving plans on top of the RI reser-
vation to handle excess costs. It is important to understand that to this day, NO
previous work has been done to implement and propose a dynamic and intelligent
(leveraging ML) way of harnessing commitment methods in the Azure environment.
Our work is from the ground up and we have faced countless challenges in terms of

ideas, implementation and logic to achieve our first version.
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3.2 Preliminary Considerations

In this section we will detail the preliminary work that had to be done in order to
move beyond a simple conceptual idea of our system. We will go through a brief
summary of the data we have used, how we engineered it, the choice of the model,
the feature engineering and how we came up with the type of results we present to
the client.

3.2.1 Details on the Data

This study is empirically grounded in data derived from the Microsoft Azure cloud
environment of 70 different companies. For the purposes of this research, the initial,
unprocessed collection of this information will be referred to as the “dataset”. Subse-
quent transformations and subsets of this data will be defined as they are introduced
throughout this work. A foundational aspect of our data processing methodology
involved determining the optimal sequence for two principal analytical stages: (1)
the comprehension and processing of cloud billing data, (2) the choice of model and
overall system architecture for a Machine Learning approach, and (3) the under-
lying logic for proposing reserved instances with newly introduced metrics such as

application-environment stability.

3.2.2 Understanding and Processing Cloud Billing Data

Billing data is an extremely complex type of data, it has numerous columns with
various meanings and normalizing the data model was one of the most important
steps. The final data model we work with comprises client identification information,
cloud usage information, virtual machine information and datetime information.

The columns used in our analysis are the following;:

e Client and Billing Identifiers:
— invoice_section: A categorical attribute representing a defined section
within the billing invoice, utilized for client or departmental segregation.
— billing_account: The primary identifier for the account responsible for
financial settlement.
e Resource Specification and Usage Metrics:
— meter_name: A descriptive name for the billed resource, typically identi-
fying the virtual machine type or service.

— meter_id: A unique code corresponding to the specific type of resource

being measured.
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— meter_sub_category: A granular classification within a broader meter
category, providing further specificity (e.g., "Dsv5 Series" for virtual ma-

chines).
— location: The geographical Azure region of resource deployment (e.g.,’westeurope’).

— commitment_pricing_model: An indicator of the applied pricing struc-
ture, distinguishing between commitment-based models (e.g., Reserved

Instance, Savings Plan, Spot) and standard Pay-As-You-Go rates.

— resource_vcpus: The number of virtual Central Processing Units (vC-

PUs) allocated to the resource instance.

— quantity: A measure of the resource consumed, typically in hours for

virtual machines, between 0 and 24, since the data is day-based.
e Environmental and Contextual Attributes:

— environment: A user-defined attribute, often derived from tags, intended
to specify the resource’s operational context (e.g., Production, Develop-

ment, Staging).

— tag_key_unfiltered: The key associated with a resource tag. This
attribute is instrumental not only for potential environment inference
but also for filtering transient or auxiliary resources (e.g., those associated

with Databricks clusters).
e Temporal Information:

— usage_day_utc:The Coordinated Universal Time (UTC) date on which

the resource usage was recorded.
e Financial Attributes:

— billing currency: The currency denomination of the billing charges
(e.g., USD, EUR).

— effective_price: The actual financial cost incurred for the resource
usage, incorporating any applicable discounts from commitments or other

pricing agreements.

— payg_price: The hypothetical cost that the same usage would have in-
curred if billed at standard Pay-As-You-Go rates, serving as a baseline

for evaluating commitment savings.

The meticulous selection, interpretation, and normalization of these attributes
formed the foundational data layer upon which all subsequent feature engineering,

model development, and analytical interpretations are built.
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3.2.3 Data Filtering and Scope Refinement

To ensure the analytical dataset was focused on relevant resource utilization pat-
terns pertinent to commitment optimization, a series of filtering criteria were applied.
The primary objective was to isolate Virtual Machine (VM) instances whose con-
sumption characteristics and pricing models were suitable candidates for Reserved
Instance (RI) consideration. Initially, the dataset was constrained to include VMs
operating under "OnDemand" (Pay-As-You-Go) or "Reservation" pricing models, as
these represent the primary states between which RI optimization occurs. However,
further refinement was necessary to exclude specific usage types or pricing constructs
that would introduce noise or were outside the immediate scope of this phase of RI

analysis. Consequently, records associated with the following were excluded:

e "Spot" Pricing Model: VMs under this model are subject to preemption and
represent transient, interruptible workloads, making them unsuitable for long-

term commitment strategies like Rls.

e "Databricks" Workloads: Databricks pricing presents a bifurcated cost struc-
ture, comprising both the underlying cloud provider’s virtual machine costs
and the Databricks Unit (DBU) consumption fees. While RIs can and should
be applied to the underlying VM infrastructure, the DBU component repre-
sents a separate, platform-level cost. This analysis is scoped to infrastructure-
level commitments (RIs) only. Optimizing DBU costs through Databricks-
specific commitments (i.e., pre-purchasing DBUs) constitutes a distinct opti-
mization vector that introduces separate analytical requirements and is there-

fore considered out of scope for our work, for the moment.

« "AKS Node Pools": Azure Kubernetes Service (AKS) node pools are funda-
mentally comprised of Virtual Machine Scale Sets, making them technically
eligible for RI coverage. However, their lifecycle is governed by the Kuber-
netes control plane and automation, such as the Cluster Autoscaler, which
dynamically adjusts the node count based on workload demand. This intro-
duces significant volatility in the number and even type of active instances.
Committing to a static number of Rls for such a dynamic fleet carries a high
risk of either underutilization (if the cluster scales in) or missed savings (if
it scales out). Consequently, these workloads were excluded from this initial
RI analysis to await a more specialized strategy that can accommodate their

elastic nature.

These filtering steps were crucial for creating a dataset representative of stable,
potentially reservable VM workloads, enhancing the signal-to-noise ratio for subse-

quent forecasting and recommendation tasks.
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3.2.4 Environment Normalization

The operational environment of a VM significantly influences its usage patterns;
for instance, production environments typically exhibit more stable and sustained
utilization compared to development or testing environments, which may display
more erratic or fluctuating consumption. Acknowledging this, a critical step involved
the normalization and stratification of environment indicators. For the initial phase
of this research, a binary classification of environments was adopted to simplify
the analytical complexity while still capturing a primary axis of usage variability.

Identified environment indicators were categorized into two distinct classes:

o "prd" (Production): Representing resources dedicated to live, operational work-

loads.

e "non_prd" (Non-Production): Encompassing all other environments, including

but not limited to development, testing, staging, and quality assurance.

This categorization allows for a foundational understanding of how environment
type correlates with usage stability and RI suitability. While this initial binary
approach provides a tractable starting point, a more granular clustering and clas-
sification of distinct non-production environments has been subsequently developed
to enable a more nuanced analysis that reflects the diverse usage profiles within the
"non_ prd" category. This refined multi-class environment model enhances the pre-
cision of usage forecasting and commitment recommendations by proposing a wider

spectrum of operational contexts.

3.2.5 Generating vCPU Information

A key parameter for quantifying resource consumption is the number of virtual
Central Processing Units (vCPUs) allocated to each Virtual Machine (VM) instance.
The methodology for determining this vCPU count varied based on the pricing model

attribute associated with each resource record.

e Direct Availability for OnDemand Instances: For VMs operating under an
"OnDemand" (Pay-As-You-Go) pricing model, vCPU count information is typ-
ically explicitly available as a distinct attribute within the billing data, as

pricing for such instances often correlates with vCPU allocation.

o Inferential Extraction for Reservation Instances: Conversely, for VMs under a
"Reservation" pricing model, the direct vCPU count attribute is often unpop-
ulated or not consistently provided. However, this information is crucial for
accurate usage intensity calculations. To address this, an inferential approach

was adopted. The meter name attribute, which describes the VM type (e.g.,
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"Bls"), typically embeds the vCPU count within its standardized nomencla-
ture (e.g., "Bls" indicates 1 vCPU in the B-series). A regular expression was
developed and applied to the meter_ name for these "Reservation" instances to

parse and extract the implicit vCPU count.

This dual approach ensured that a vCPU count could be reliably associated with
each relevant VM record, regardless of its pricing model. The extracted or inferred
vCPU count was then populated into a standardized resource_ vcpus field, forming
a critical input for the subsequent calculation of the Daily vCPU Usage Intensity

metric.

3.2.6 Core Metric Calculation

Then, we were able to define the core metric of this study: the Daily vCPU Usage
Intensity (I). That is, a resources’ total vCPU usage distributed over a 24-hour

period. This metric is computed as follows:

Where ¢ is the quantity (hours a resource has been used) and n is the number
of vCPU used by that resource. To normalize the data, the result is divided by
24, converting this value into average vCPU usage per day. This transformation
allows us to understand the daily usage intensity for each virtual machine, ensuring
that the subsequent analysis is based on consistent time-based units. I is the scalar
value we will train our model to predict in the future in our forecasting-regression

problem.

3.2.7 Aggregating Candidates for Reserved Instances

Following the initial data preprocessing and enrichment stages, a critical step in-
volved defining the fundamental analytical units for assessing Reserved Instance
(RI) candidacy. This was achieved by aggregating resource consumption data based
on specific multi-attribute ‘combinations’ Two hierarchical levels of combinations

were defined:

o Precise Combination (PC): This represents the most granular level of analysis
and is defined by a unique tuple of the following attributes:
— invoice_section (client/departmental identifier)
— meter_sub_category (specific VM type/series)
— location (Azure deployment region)

— environment (normalized environment category)
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This granularity is hypothesized to be crucial for accurately modeling usage pat-
terns and identifying suitable RI candidates, as environments are significant implicit

drivers of consumption behavior.

o Broad Combination (BC): This represents a higher-level aggregation, defined
by a unique tuple of:

— invoice_section
— meter_sub_category

— location

The BC effectively subsumes multiple PCs that share the same client, VM type,
and region, irrespective of their specific environment.

A significant methodological challenge lies in finding the optimal analytical scope
for these combinations, particularly when considering the distinct requirements of
model training versus practical inference and recommendation generation. For model
training (e.g., forecasting usage stability or future consumption, later described in
this work), the Precise Combination (PC) is generally preferred. Its granularity
allows the model to learn nuanced patterns influenced by specific virtual machines,
locations, invoice sections, and environments, which might be obscured at higher

aggregation levels.

However, for generating actionable RI recommendations, which are often made
at the level of a VM type within a location for a given client (approximating the
Broad Combination - BC), a decision must be made. Recommendations cannot
always be tied to a highly specific environment, as Rls are typically purchased for a
VM series in a region. Therefore, a strategy is required to either train models at the
PC level and then intelligently aggregate their predictions or stability assessments
up to the BC level for recommendation, or to potentially train separate, perhaps
simpler, models directly at the BC level using aggregated historical data. This study
primarily leverages PCs for detailed stability and pattern analysis, with subsequent

aggregation of insights for broader recommendation scopes.

3.3 Machine Learning Approach

Optimizing Reserved Instance (RI) commitments within the dynamic Azure cloud
environment presents a significant analytical challenge, necessitating accurate, long-
term usage forecasting. Azure resource consumption exhibits considerable hetero-
geneity across different virtual machine series, locations, invoice sections, and opera-
tional environments. This complexity is further compounded by inherent consump-

tion volatility, potential seasonality, and the occurrence of data gaps or anomalies
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within billing records. The primary objective of this research phase was to develop
a robust forecasting methodology capable of navigating these complexities to in-
form strategic 1-year and 3-year RI purchase decisions, directly minimizing cloud

expenditure while ensuring adequate capacity coverage.

3.3.1 Initial Combination-Specific Modeling Strategy

The initial methodological approach centered on capturing the specific consumption
nuances of each resource combination by training individual time-series forecasting
models for every distinct Broad Combination (BC), as previously defined (i.e., a
unique invoice_section, meter_sub_ category, and location). The selection of an

appropriate model architecture was a key consideration.

Tests with Facebook Prophet

Initial evaluations explored the Prophet forecasting model, developed by Facebook.
Prophet, known for its robust handling of seasonality, trend changes, and holidays,
and its foundation in additive regression models (conceptually similar to general-
ized additive models, GAMs, often incorporating ARIMA-like error structures), was
tested for its adaptability. However, this model proved suboptimal for the specific
characteristics of many cloud VM consumption patterns. Numerous VM workloads,
particularly those targeted for RI consideration, exhibit sustained, high utilization
(approaching 100which inherently lacks strong seasonality or cyclical components
that are a primary strength of Prophet. Consequently, the Prophet-based approach

did not yield sufficiently accurate or reliable forecasts for this domain.

Transition to XGBoost: A More Robust Solution

Subsequently, attention shifted to the XGBoost (Extreme Gradient Boosting) model,
a gradient-boosted decision tree ensemble known for its high performance and flexi-
bility in capturing complex, non-linear patterns in data that may not exhibit regular
cyclicality. This model was chosen for the following reasons:

The development of the XGBoost models involved extensive feature engineering,
incorporating a rich set of predictors derived from the time series data. These

included:

o Temporal Components: Date-part features (e.g., day of week, month, year),

time indices, and polynomial trend representations.

e Cyclical Encodings: Sine and cosine transformations of time-based features to

capture potential periodicities.

o Lag Features: Past consumption values at various lags.
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Figure 3.1: Combination-specific models provide an accurate forecast
w.r.t the historical data, but offer poor deployability.

Rolling Window Statistics: Moving averages, standard deviations, and other

statistical measures calculated over defined historical windows.

Difference-Based Metrics: First and second-order differences to capture rates

of change (velocity) and acceleration in consumption.

The rationale underpinning this highly localized, combination-specific modeling

strategy was the hypothesis that individual models, tailored to the unique histor-

ical behavior of each BC, would yield the most accurate representations of their

consumption dynamics.

Re-Evaluation the Combination-Specific Strategy

Figure 3.1 illustrates 2 inferences from 2 individual models. The blue line is the

historical usage of the virtual machines both located in "westeurope" servers. The

first one (above) illustrates the model that was trained on flat historical daily vCPU

usage intensity (/) and proposed a flat forecasted I over 6 months in the future. The

blue zone represents an actionable reservation of 6 vCPU of the virtual machine "Av2

Series" for a 3 years commitment. More details on these will come later in this work.
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The second graph of Figure 3.1 (under) illustrates a model that was trained on
historically fluctuating data. It proposes a forecast I that seemingly follows such
fluctuating trends. The blue zone represents the actionable reservation of vepu for
a 3 years commitment, the green zone represents the actionable reservation of vepu
for a 1 year commitment, and the red zone represents the excess on-demand usage

each for a virtual machine "BS Series".

Despite the theoretical appeal and the demonstrable accuracy of individual XG-
Boost models on their specific training data, this initial strategy encountered sub-
stantial practical and methodological obstacles that limited its viability for strategic,

long-term RI decision-making:

e Computational Overhead: The training of potentially hundreds or thousands
of individual XGBoost models, one for each BC, imposed a significant compu-
tational burden. This was particularly noted by the necessity of performing
hyperparameter optimization (e.g., via GridSearchCV or randomized search)
for each distinct model to achieve optimal performance, leading to infeasible

execution times for a production-scale system

o Forecast Reliability for Strategic Decisions: While individual models exhibited
high fidelity to past data, their long-range forecasts (1-3 years) often proved
unreliable or lacked the intuitive coherence required for making substantial
financial commitments. Highly localized models can be prone to overfitting to
specific historical idiosyncrasies, leading to divergent or implausible long-term

extrapolations.

e Scalability and Maintenance: Managing and maintaining a large ensemble of

independent models presents considerable operational challenges.

These limitations necessitated a re-evaluation of the forecasting approach, prompt-
ing an investigation into more scalable and robust methodologies capable of bal-
ancing localized accuracy with generalizability and computational tractability for

strategic RI planning.

3.3.2 Transition to a Global Forecasting Model and Methodological
Refinements

The computational intractability and deployment complexities associated with the
combination-specific modeling strategy necessitated a significant methodological pivot.
A global forecasting model, trained on a concatenated dataset comprising time se-
ries from all relevant Broad Combinations (BCs), was adopted. While this approach

inherently addressed the scalability and computational challenges, it introduced the
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new scientific problem of enabling a single model to effectively differentiate and learn

the unique consumption behaviors of diverse BCs.

Initial Challenges with a Global Model

Initial iterations of the global model exhibited several common failure modes, pro-
ducing forecasts unsuitable for reliable Reserved Instance (RI) planning. These

included:

o Unrealistic Growth/Decline: Forecasts demonstrating explosive, unbounded
growth (often attributable to the instability of polynomial time features) or
precipitous declines immediately following the historical data horizon (sug-
gesting issues with feature calculation at prediction boundaries or excessive

sensitivity to end-of-series noise).

e Inertial Flat-Lining: Projections remaining inexplicably flat despite evident
historical variations, indicative of potential over-regularization or the model’s

failure to capture underlying dynamics.

e Lack of Differentiation: A critical issue was the model’s tendency to produce
nearly identical forecast patterns for distinct resource types (e.g., 'Eav4d’ vs.
'BS’ series VMs), indicating an inability to effectively leverage categorical in-

formation to discern combination-specific nuances.

Such unreliable forecasts rendered the subsequent RI optimization calculations
(e.g., determining the optimal mix of 1-year RlIs, 3-year Rls, and On-Demand ca-

pacity) highly uncertain and prone to suboptimal outcomes.

Methodological Adaptations for the Global Model

To address these shortcomings and enhance the global model’s capacity to learn

differentiated, stable forecasts, several key adaptations were implemented:

e Training Target Consistency: The model was trained directly on the individual
time series of each BC, rather than on aggregations or transformations that

might obscure specific patterns.

e Consistent Temporal Feature Engineering: Rigorous attention was paid to
ensuring that time-based features (e.g., time_index) were calculated consis-
tently, relative to a global reference point (e.g., a fixed start date), across both

historical data and the future prediction horizon.

e Stabilizing Feature Selection: Features identified as inherently unstable or

prone to noise amplification, such as high-order polynomial time trends and
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highly sensitive difference-based metrics (e.g., acceleration), were systemati-

cally excluded or regularized.

o Explicit Combination Encoding and Interaction Features: Categorical identi-
fiers (e.g., VM series, location, invoice section) were transformed using One-
Hot Encoding. Crucially, interaction features were engineered by combining
these one-hot encoded identifiers with key temporal and lag features. This ex-
plicitly guides the model to learn distinct trends, seasonalities, and responses

to lagged consumption specific to each category or combination of categories.

o Data Integrity and Preprocessing: Time series were preprocessed to handle
discontinuities. Gaps in historical data were imputed using forward-filling to
provide more continuous input for lag and rolling window features. Conversely,
specific periods or combinations identified as exhibiting extreme, unrepresen-
tative noise were selectively excluded from the training set to prevent undue

influence on the global model.

e Regularization and Model Complexity Control: Careful tuning of XGBoost
hyperparameters (e.g., max_ depth, gamma, min_ child_ weight, lambda, al-
pha) was performed, in conjunction with techniques like early stopping during
training, to achieve a balance where the model could capture genuine variations

without overfitting to noise present in the aggregated dataset.

Addressing Data Scarcity through Data Augmentation

A significant challenge encountered during the training of the global forecasting
model was the influence of historical data imbalances and the limited availability
of recent, representative consumption patterns. Initial training attempts utilizing
the full available historical data (approximately 2-3 years, 1000 daily data points
per combination) resulted in models that exhibited a pessimistic bias. This was
attributed to the prevalence of low-usage periods in the older historical data, often
preceding significant "move-to-cloud" transitions or substantial workload expansions
within organizations. For instance, if a substantial increase in usage only occurred
in the most recent 5 months, approximately 70% of the training data might rep-
resent a low-utilization regime, unduly influencing the model to under-predict fu-
ture consumption, particularly for combinations that had recently scaled. This was
evidenced by forecasts initiating at levels below the most recent observed values,
indicating an inability to adequately capture recent upward trends. To mitigate
this temporal bias and improve the model’s responsiveness to recent trends, two key

strategies were adopted:

o Focused Training Window: The training dataset was temporally constrained to

the most recent period of significant, representative usage, typically the latest
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6 months (approximately 180 days). While this reduces the overall volume of
historical data, it concentrates the model’s learning on patterns most relevant

to current and future consumption levels.

e Time Series Data Augmentation: To compensate for the reduced size of the
training window and to enhance model robustness, data augmentation tech-
niques specific to time series were employed. These techniques artificially
expand the training dataset by creating plausible synthetic variations of the

original sequences. The primary methods utilized were:

— Jittering: Introducing small, random Gaussian noise to the consumption
values of the training series. This helps the model become less sensitive

to minor, exact fluctuations in the historical data.

— Time Warping: Applying smooth, non-linear distortions to the time axis
of segments within the training series (locally stretching or compressing
time). This makes the model more resilient to slight variations in the

timing of events or patterns.

Hyperparameter Optimization

Given the complexity of the cloud consumption data, the engineered feature set, and
the XGBoost algorithm itself, achieving optimal predictive performance necessitates
careful tuning of the model’s hyperparameters. Default parameters often lead to
suboptimal outcomes, such as underfitting (failing to capture complex patterns) or

overfitting (memorizing training data noise and generalizing poorly to unseen data).

To systematically identify the optimal hyperparameter configuration for the
global XGBoost model, an automated optimization routine utilizing the Optuna
framework was implemented. Optuna was selected for its efficiency in navigat-
ing large hyperparameter search spaces compared to exhaustive methods like Grid
Search. It employs intelligent sampling strategies (e.g., Tree-structured Parzen Es-
timator - TPE) to probabilistically explore the defined space, concentrating compu-

tational effort on more promising regions. A standard routine is the following:

o Defining a search space for key XGBoost hyperparameters (e.g., n_ estimators,
max__depth, learning rate, gamma, min_ child_ weight, regularization param-

eters lambda and alpha).

o Iteratively training and evaluating the XGBoost model with different hyper-

parameter combinations suggested by Optuna.
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e The objective function for Optuna is to minimize a predefined error metric
(e.g., Mean Absolute Error - MAE) on a dedicated, temporally distinct valida-
tion dataset. This validation set preserves the temporal ordering of the data,
ensuring that optimization is geared towards generalization to future, unseen

time steps.

The hyperparameter optimization routine is crucial for maximizing the global
model’s predictive accuracy. By systematically searching for and selecting the hy-
perparameter set that minimizes error on the validation data, this process enhances
the model’s ability to generalize. The final forecasting model is then retrained on the
combined training and validation data (or the full relevant historical window) us-
ing these optimized best parameters. This data-driven approach to hyperparameter
selection significantly increases the likelihood of achieving robust and reliable per-
formance on the final, unseen test set and in production forecasting scenarios. The
routine is designed to be re-executable (e.g., weekly) to allow for continuous model
improvement as new data becomes available and consumption patterns potentially

evolve.

Performance Assessment of the Global Model

The global model, incorporating these refinements, offers significant advantages in
terms of reduced computational intensity for training and streamlined deployment
compared to the combination-specific approach. While the visual fidelity of its fore-
casts for individual BCs may not always match the close historical fit of highly
localized models, the global model demonstrates improved overall stability and gen-

eralizability in its predictions, particularly for longer forecast horizons.

However, certain limitations persist. The model can exhibit challenges in accu-
rately forecasting periods of sustained flat-line usage or precisely replicating sharp,
short-term fluctuations, sometimes tending towards a pseudo-mean prediction based
on the diverse patterns observed across the entire dataset. This behavior suggests
that while categorical features aid differentiation, the model can still be influenced
by the aggregate characteristics of the training data, particularly for combinations

with less distinct historical signals or those susceptible to minor input variations.

Figure 3.2 illustrates 2 inference from 1 refined model on the same historical use
of the virtual machines as displayed on Figure 3.1 (with a slight difference in time as
this version had to be deployed on more recent data, therefore only the test set differ).
On the graph above, we can see that the historically flat I is not well forecasted.
In fact, the 6 month forecast displays noise that illustrates some limitations of our
global model, leading to a reservation zone (in blue) that is underutilized at some

periods (meaning the reservation exceeds the forecasted I ).
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Figure 3.2: The general model still lacks forecasting quality. The

flatline isn’t properly forecasted on the upper image and the fluctu-

ations are not properly illustrated in the lower image which tends to
predict a pseudo-mean value out of the historical data.
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The second plot illustrates the forecast of the fluctuating historical data of vir-
tual machine "BS Series" with a forecast of poor quality. In fact, as soon as it
begins, I suffers a violent drop that does not seem to follow the growing trend, then
the intensity spikes do not follow the profile of the historical data. Both of these
plots illustrate the presence of noisy data in the training data, making our model

inaccurate and unreliable.

Initial Global Model Refined Global Model

Mean-Average-Error 8.729 1.135
R? 0.119 0.975
Number of Features 22 172

Table 3.1: Model performance on the test set after training. The

refined model incorporates data augmentation, 180 days of historical

data, enhanced feature engineering, and hyperparameter optimiza-

tion. While yielding better results, it is not reliable and does not
provide the expected forecasts.

Quantitative evaluation on a held-out test set indicates that this revised method-
ology yields forecasts with improved error metrics compared to the less stable ex-
trapolations from the initial global model attempts as displayed in Table 3.1. The

metrics used are the following:

e MAE: The Mean-Average-Error measures the absolute difference between the

predicted values (I;) and the actual values (i):

- MAE=1y7, |I; — y¢|, with n being the number of samples in our test

set.

— The rationale for this metric in our forecasting setup is that it gives a clear
measure of average error magnitude, as well as being robust to outliers

compared to squared error metrics.

¢ R-squared: The Coefficient of Determination measure the proportion of vari-

ance in the observed data that is predictable from the input features:

n _f 2
- R*=1- %, with n being the number of samples in our test
t=1

set.
— x If R-squared = 1, then the model achieves perfect predictions
* R-squared = 0, then the model performs no better than predicting
the mean
* R-squared < 0, then the model performs worse than simply predicting

the mean.
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— The rationale for this metric is that it explains how well our model cap-
tures the variance of our data, which in our case is extremely important.
Also, it stands as a good baseline metric for comparison with other mod-

els.

Using both of these metrics helps balance interpretability and statistical rigor,
especially important in time series forecasting, where both the size of errors and the

structure of the underlying signal matter.

3.3.3 Scalability Challenges for Production Deployment

While the global forecasting model offers significant advantages in terms of cen-
tralized training and deployment, its application to extensive, multi-organizational
datasets (e.g., encompassing data from over 70 distinct companies) revealed substan-
tial scalability challenges. These challenges primarily manifest in two interconnected

areas: feature dimensionality and computational overhead during inference.

Proliferation of Features in Diverse Datasets

The one-hot encoding strategy for categorical identifiers (such as meter__sub__category,
location, invoice_section, and environment), while crucial for enabling the global
model to learn combination-specific nuances, leads to a rapid expansion of the fea-
ture space as the diversity of these categorical values increases. In larger, aggregated
datasets, the number of unique values for these identifiers can grow substantially,
resulting in models with a very high number of input features (e.g., potentially
exceeding 900 features in some scenarios).

This high dimensionality presents several problems:

e Increased Model Complexity: Models with a vast number of features can be-

come more difficult to train, interpret, and debug.

e Computational Cost of Feature Engineering: The necessity to generate these
numerous features (including one-hot encoded categories and their interactions
with temporal/lag features) for each inference step becomes computationally

expensive.

e Inference Latency for Autoregressive Forecasting: Given the autoregressive
nature of the forecasting model (where predictions are fed back as inputs for
subsequent steps), generating a long-range forecast (e.g., 180 days) requires
iterative feature creation and prediction. High feature counts significantly in-
crease the latency of this iterative process, potentially rendering it impractical
for timely decision-making (inference for up to 45 minutes with a 900 feature

model, as well as intensive memory usage).
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Mitigating Scalability Issues and Enhancing Efficiency

To address these scalability concerns and ensure the practical viability of the global
model, several data reduction and feature management strategies have been investi-
gated. The principle is to intelligently filter and simplify the input data and feature
set before model training and inference, thereby reducing computational load with-
out catastrophically sacrificing predictive performance on key combinations (less is
more).

Key strategies include:

e Pre-filtering of Low-Impact Combinations: A primary approach involves iden-
tifying and excluding Broad Combinations (BCs) or Precise Combinations
(PCs) that contribute minimally to overall consumption or RI optimization

potential. This can be achieved by using thresholds of consistency checks.

o Strategic Categorical Feature Management: Instead of one-hot encoding every
unique environment string, a more structured approach involves mapping di-
verse raw environment inputs to a smaller, predefined set of canonical environ-
ment categories (e.g., 'production’, ’development’, ’testing’, ’staging’, ’sand-
box’). Further aggregation, such as grouping 'development’ and ’sandbox’ if

their usage patterns are statistically similar, can further reduce dimensionality

o Iterative Feature Selection and Pruning: Post-initial model training, feature
importance analysis (e.g., using SHAP values or feature permutation impor-
tance from XGBoost) can identify features (including specific one-hot encoded
categories or interaction terms) that have minimal predictive power. These
can be pruned to create a more parsimonious model without significant loss of

accuracy on critical combinations.

The objective of these strategies is to achieve a "Turing-esque" efficiency — to
accomplish more (accurate and timely forecasting for key entities) with less (reduced
data volume, fewer features, lower computational cost). This involves a continuous
cycle of intelligent filtering, feature engineering refinement, and model optimization
to ensure the forecasting system remains scalable and performant when deployed

across increasingly large and diverse cloud environments.

3.3.4 Results of the Data and Feature Filtering Strategy

The implementation of a multi-faceted filtering strategy, targeting both noisy data
combinations and non-contributory features, yielded significant improvements in the
performance and efficiency of the global forecasting model (Table 3.2). Applying fil-

tering criteria to consumption combinations, specifically excluding those with usage
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intensity below a defined threshold set to 6 or exhibiting excessively high histori-
cal coefficient of variation set to 0.02, successfully removed data points unlikely to

represent stable or reservable workloads.

Figure 3.4 illustrates the inference of our filtered model on the same historical I
of the virtual machines displayed on Figure 3.2. The first graph illustrates a near
perfect forecast of a historically flat I on the virtual machine "Av2 Series". Only
very little noise is present on the forecast, but such variations can be ignored at this

scale.

The second graph of Figure 3.4 illustrates the forecast for a historically fluctu-
ating I. The forecast displays appropriate trends and spike profiles illustrating a
cyclical tendency that is significantly better than any of the previous versions of the

global model for the virtual machine "BS Series".

Initial Global Refined Global Filtered Global

Model Model Model
Mean-Average-Error 8.729 1.135 0.705
R? 0.119 0.975 0.983
Number of Features 22 172 24

Table 3.2: Comparison of the versions of the model. The filtered
model has achieved the best results so far. The filtered model is the
refined model, with a filtering strategy.

This data-level filtering enhanced the signal-to-noise ratio within the training
data, enabling the model to better discern and learn representative usage patterns.
Complementing this, a systematic feature selection analysis was conducted. This
analysis revealed that, contrary to initial hypotheses regarding complexity, the in-
teraction features engineered between categorical identifiers and temporal/lag vari-
ables did not provide significant predictive benefit for this particular dataset and

model architecture.

Consequently, the final feature set was streamlined to retain only the base tem-
poral and engineered features alongside the one-hot encoded categorical identifiers.
This combined data and feature filtering approach significantly reduced the feature
dimensionality, decreasing the number of input features from approximately 100 to
a more parsimonious set of around 20. The result was a substantial improvement in
overall predictive performance, observed consistently both on the independent test
set used for model validation and during combination-specific inference, demonstrat-
ing that a more focused and simplified input indeed allowed the model to achieve
greater accuracy and robustness. Although the performance of the filtered model on

the test set is similar to the refined models’ performance, the results are better with
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a smaller amount of features (Figure 3.3). As we can see, the filtered model has a

close to perfect fit to the test data, harnessing strong fluctuations and patterns.

Interestingly, evaluation of the models (Table 3.2) revealed a significant out-
come of the filtering strategy. The ability of the model to explain the variance in
the data, as quantified by the R? metric, remained comparable between the refined
model and the filtered model. Crucially, this similar level of variance explanation was
achieved despite the filtered model utilizing a significantly reduced number of input
features. This finding strongly suggests that a substantial portion of the features
in the original, more complex model did not contribute to capturing the underlying
data variance. Furthermore, the filtered model demonstrated superior predictive
performance, exhibiting a lower Mean Absolute Error (MAE). This indicates that
the removed features were not merely redundant but likely introduced noise or com-
plexity that negatively impacted the model’s ability to generalize, making it more
‘error-prone’ on unseen data. Achieving better performance with a substantially
smaller feature set highlights the efficiency and robustness gains of the filtering

strategy.

Model Prediction on Test Set | MAE: 0.705584571501788, R2: 0.9838308652728204

—— Test Data
/ Prediction

Daily vCPU Usage Intensity

: o
J I
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Figure 3.3: Plot of the predictions of our filtered model on the test set.
The model is able to fit almost perfectly to highly fluctuating data
yielding results that match our expectations in terms of reliability.

3.4 Reserved Instance Recommendation Strategy

Following the generation of usage forecasts by the global model, the subsequent crit-
ical phase involves translating these predictions into actionable Reserved Instance
(RI) commitment recommendations. This section details the methodology devel-
oped for this translation, focusing on the derivation of a conservative baseline for

reservations and the rationale behind its calculation.
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Figure 3.4: By filtering the data before training, we have removed a

substantial amount of noisy data, allowing the inference to be only fo-

cused on the proper candidates for optimization. The model performs
well on the test set, and displays good generalization capabilities.

3.4.1 Bridging vCPU Usage Forecast and Actionable Recommen-
dations

While the forecasting model provides predictions of future Daily vCPU Usage In-
tensity (I), directly converting these point forecasts into RI purchase decisions is
imprudent. Forecasts are inherently probabilistic and subject to error. Committing
to RlIs based solely on mean predicted usage carries a significant financial risk: if
actual usage falls below the forecast, the reserved capacity becomes underutilized,
negating potential savings and possibly incurring net losses. Therefore, a robust
methodology is required to determine a "safe" level of commitment that balances

cost-saving opportunities with the risk of over-commitment.

The Minimum Lower Bound (MLB)

The Minimum Lower Bound (MLB) is a statistically derived, conservative estimate
of future usage that forms the basis of a Reserved Instance (RI) recommendation
strategy. The goal is to identify a usage level that can be covered by long-term RlIs

(3-year and 1-year) with high confidence, minimizing the risk of underutilization.
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Predicted usage above the MLB is handled by more flexible options like On-Demand

capacity.

Initial and Refined Derivation The MLB is calculated using the model’s point
forecast (I) and the standard deviation of its Mean Absolute Error on a test set,
0(M AFE}cs), which quantifies the variability of the model’s prediction errors.

The initial formula was based on a 95% confidence interval:
MLB =1—1.96%0(MAE;.)

However, this was found to be overly restrictive and led to conservative recommen-
dations that missed potential savings.
To achieve a better practical balance between risk mitigation and cost optimiza-

tion, the formula was refined to:
MLB =1 —3%0(MAE;.q)

The choice of the factor 3 is justified by:

¢ Increased Confidence: It provides a more robust lower bound, referencing
Chebyshev’s inequality and capturing a very high percentage of deviations
(199.7% for a normal distribution).

e Error-Adaptive Conservatism: The MLB’s conservatism dynamically ad-
justs to model performance. A high o(M AFE;.s) (inconsistent errors) pushes
the MLB lower for a more conservative recommendation, while a low o (M AEjest)

(consistent errors) keeps the MLB closer to the forecast 1.

Finally, a historical floor sanity check is applied. The methodology takes
the maximum of the forecast-based MLB and a conservative percentile of recent
historical usage. This acts as a failsafe, ensuring the recommendation remains robust

even if the forecast model is temporarily inaccurate.

Incorporating Application-Environment Stability Indicators

The intrinsic value of a Reserved Instance is maximized when aplied to predictably
utilized workloads. A critical factor influencing this predictability is the combined
stability of the operational environment and the specific application running on the
VM. While the MLB provides a conservative usage floor, allocating this reservable
capacity across different RI terms (e.g., 1-year vs. 3-year) or adjusting the pro-
portion of the MLB to reserve can be further refined by assessing the historical
stability of each application-environment pairing. Conventional heuristics, such as

fixed percentage allocations (e.g., an 80/20 split of the MLB between production
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and non-production reservations), lack the granularity to adapt to diverse stability

profiles and may lead to suboptimal commitment strategies.

To address this, a dynamic stability factor («) is introduced. This factor, de-
rived from a separate stability analysis for each unique application-environment
pair, quantifies the historical consistency and predictability of their usage patterns.

« typically ranges from 0 to 1, where higher values indicate greater stability.

Instead of a fixed percentage, « is used to modulate the portion of the MLB con-
sidered for longer-term, higher-discount RIs (e.g., 3-year terms). For example, the
capacity recommended for 3-year Rls for a specific application-environment com-
bination might be calculated as o * MLB. More stable combinations (higher «)
would thus be recommended for a larger proportion of their MLB to be covered
by longer, more cost-effective commitments, while less stable applications or envi-
ronments would see a more conservative allocation to such terms. This approach
allows for a data-driven, adaptive allocation of the reservable capacity, moving be-
yond static rules to tailor recommendations to the observed behavior of each specific
workload. This approach will be detailed in a later chapter as it represents a study

of its own.

3.4.2 Reflection on the Stability Indicator

Assessment of the dynamic stability indicator against a simpler, static heuristic allo-
cation method (specifically, a fixed 80/20 split between broad production and non-
production categories) revealed outcomes that must be contextualized by the scope
of the initial analysis. This study was conducted within the operational framework
of a single small-to-medium-sized enterprise, whose cloud footprint is characterized
by a relatively simple structure: costs are concentrated in a few VM families, and
workloads are predominantly production-oriented. Within this specific, homogenous
environment, the granular, data-driven approach of « did not yield a significant im-
provement in the financial effectiveness of the Reserved Instance recommendations

over the simpler heuristic.

Furthermore, the implementation of this more granular approach introduced
additional complexity into the data processing pipeline, notably requiring the con-
sistent inclusion of the application identifier as a key grouping dimension, thereby
increasing computational overhead. Given that the recommendations derived using
a were comparable to those from the straightforward 80/20 rule in this limited test
case, we have retained the simpler heuristic for the current model. We posit that
the full value of the dynamic stability factor will become apparent when applied to

more complex and heterogeneous environments. To this end, we plan to evaluate
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the « indicator on a much broader dataset, such as the one encompassing the 70
distinct corporate entities, where we anticipate its ability to model nuanced stability

differences will prove to be of greater impact and interest.

Stability-enhanced Model No Stability Model

Mean-Average-Error 2.68 0.705
R? 0.823 0.983
Number of Features 50 24

Table 3.3: Model performance comparison. The no stability model

outperforms the stability-enhanced model, which has more granular

information (detailed environments and application). This increases

the number of features and complexifies the model, yielding less ac-
curacy.

The results in Table 3.3, which show the 80/20 model outperforming the more
complex a-based model, should be interpreted with this context in mind. For this
specific test set, the simpler model not only performed better but also generated more
financially optimistic recommendations while remaining within a safe risk profile.
This reinforces the conclusion that for a relatively stable and simple cloud estate,
a broad heuristic is highly effective. However, this outperformance is considered
a function of the dataset’s simplicity rather than a definitive weakness of the «

indicator itself.

Other Use for the Stability Indicator

While the direct integration of the stability indicator into the primary allocation
formula did not yield the anticipated performance gains (Table 3.3), the underlying
"Alpha Stability Catalog" resulting from this analysis retains significant value as a
data product. This catalog, which provides a quantified metric of empirical sta-
bility for each application-environment pair, offers several alternative research and
practical perspectives. Notably, it can serve as a valuable confidence indicator for
the recommendations generated by the system; a higher « for a given combination
suggests that its historical usage has been more predictable, thereby providing a

basis for higher confidence in the associated forecast and RI recommendations.

Furthermore, the core methodology developed for calculating o — assessing work-
load predictability based on historical usage patterns — is conceptually transferable
and can be applied to evaluate the stability and suitability for commitment of work-
loads running on other Azure services beyond Virtual Machines (e.g., databases,
container instances), offering a broader toolset for cloud resource optimization and

workload management.
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3.4.3 Incorporating Existing Reservations

Any new RI recommendations must consider the organization’s current RI portfo-
lio to avoid over-reservation and to accurately determine the net new commitment
required. Simply recommending the full MLB without accounting for existing reser-
vations would lead to redundant and financially inefficient commitments. The fore-
casting and MLB calculation are performed on the total observed usage, inclusive
of workloads already covered by existing RIs. This is because the underlying usage
pattern, regardless of current RI coverage, is what needs to be understood for fu-
ture planning. Existing reservations, which typically manifest as sustained, flat-line
usage at or near 100% utilization for the reserved capacity, do not require complex

forecasting for their own usage (as their usage is, by definition, committed).

Therefore, to determine the additional capacity to reserve, the sum of vCPUs
already covered by active, relevant existing Rls for a given combination (RIeyist)
is substracted from the calculated MLB. The net new reservable vCPU quantity
(Rlnew) is then:

Rlpew = MLB — Rlogist

This Rl value, if positive, then becomes the target for new RI purchaase
recommendations, to be allocated across different RI terms based on factors like
the stability indicator o and organizational commitment preferences. This standard
and logical approach ensures that recommendations are based on the incremental
capacity required to meet the conservative usage floor (MLB) once existing commit-
ments are factored in. It directly quantifies the additional vCPU units that should

be reserved to achieve the target conservative coverage.

3.4.4 Deriving and Allocating the Global RI Recommendation

With the Minimum Lower Bound (MLB) established, application-environment sta-
bility factor a quantified, and existing Rls accounted for, the next step is to for-
mulate a global RI recommendation (GR) for the net new capacity required. This

recommendation must then be optimally allocated between 1-year and 3-year terms.

Formulation of the Initial Global RI Recommendation

Initial conceptualizations considered a heuristic allocation of the net reservable ca-
pacity based on broad environment categories. For instance, a naive approach might
allocate 80% of this net capacity for production environments and 20% for non-

production environments, assuming a binary environment classification:

GR = ((0.8% MLB) + (0.2« MLB)) — Rlepist
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with Rl..;s+ being the existing RI. However, this static percentage-based ap-
proach lacks the granularity to adapt to the diverse stability profiles of specific

application-environment pairings.

Formulation of the Refined Global RI Recommendation

Leveraging the « factor, which reflects the historical stability of a specific application-
environment combination (PC), allows for a more nuanced determination of the por-
tion of the MLB that should be confidently targeted for reservation. The global net

new RI recommendation (GR) for a given PC is therefore calculated as:

GR = max(0,round(c * MLB — Rlegist))
Where:

e « is the stability factor for the specific application and environment the rec-

ommendation is being built upon.
o MLB is the Minimum Lower Bound calculated for that combinations’ forecast.
e Rl..;st are the vCPUs already covered by existing RI for that combination.
» round() is applied for practical whole vCPU or instance recommendations.
o max(0, ...) ensures that the recommendation is non negative.

This formulation directly links the recommended reservable capacity to the
demonstrated stability of the workload; more stable workloads (higher «/) will have
a larger proportion of their MLB (after accounting for existing RIs) recommended
for new commitments. The necessary application and environment identifiers are
available during inference as they were integral to the PC definition used for fore-
casting and stability analysis, allowing for a direct lookup of the relevant o from a

pre-computed "Alpha Catalog".

3.4.5 Allocation of 1-Year and 3-Year RI Terms

Once the global recommendation (GR) for a given broader scope (BC) is determined,
it must be strategically allocated between 1-year and 3-year RI terms. While 3-
year Rls offer the highest discounts, they also entail a longer commitment period,
increasing the risk associated with potential future decreases in usage that might
fall below the reserved level. A dynamic allocation method is required, moving
beyond fixed percentage splits to one that considers the confidence and stability of
the forecast itself. To address this, the allocation strategy incorporates a measure
of the forecast’s own volatility. The principle is that more stable, less fluctuating

forecasts warrant a greater proportion of the GR to be allocated to 3-year Rls, while
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more volatile forecasts suggest a more cautious approach with a larger allocation to

1-year Rls.

The capacity allocated to 3-year Rls (RIsy) is determined by further adjusting
the GR based on the standard deviation of the forecast itself J(f ) over the relevant

commitment horizon:

RIzy = max(0, round(GR — ke * o(I))

Where:

. U(f ) is the standard deviation of the forecasted daily usage intensity over a

period of 180 days. A higher o(I) indicates a greater predicted fluctuation or

uncertainty and vice-versa.

o kgpiit is a risk aversion coefficient. We have decided to set kg3 to 3, in order to

have the same coefficient as when building the minimum lower bound (MLB).

The remaining portion of the GR is allocated to 1-year RIs (RIyy:

RIiy = GR — Rlzy

A

This approach ensures that if the forecast is highly stable (low o([1)), RIsy will
be close to GR as it is the most profitable term option. Conversely, if the forecast
exhibits significant fluctuations (high o(I)), RIsy will be reduced, shifting more
capacity to the more flexible 1-year term, mitigating the risk of under-utilization for
long-term commitments. An illustrative example of a stable forecast lending itself

to a higher 3-year RI proportion is shown in Figure 3.4.

3.4.6 Estimating Financial Gain

Quantifying the potential financial gain represents a critical component of the Re-
served Instance (RI) recommendation process, serving as the primary metric for
demonstrating value to stakeholders. This estimation process translates the rec-

ommended commitment quantities into projected cost savings relative to standard
Pay-As-You-Go (PAYG) rates.

To ensure stability and consistency in financial projections, the methodology
shifted to basing cost and savings estimations solely on the empirical data derived
from the Azure billing records themselves. This approach leverages the effective
price (actual cost after discounts) and pay-as-you-go price (hypothetical cost at
standard rates) attributes present in the processed historical data. In order to have
a reliable estimation of the discounts and retail prices of each virtual machine in a

given region, we have built a script which creates a CSV file updating each month
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if pricing information changes. The CSV file is then accessed and queried with the
virtual machine category and the location in which it is used by our clients. This
allows us to extract information such as 1 year and 3 years discounts, as well as
the retail price (D1y, D3y, and Py, respectively). This shift also allows for better
alignment between the usage data being forecasted and the pricing data used for

estimation.

In previous versions, the script relied on hard-coded values for the discounts and
retail price, which made the financial estimation of the recommendation error-prone.
The estimated total global savings (GS) resulting from adopting the recommended
new RI commitments (RI;y and RIyy) is then calculated using these internally
derived pricing components. The calculation considers the volume allocated to each
commitment term and their corresponding estimated discounts. The formula for

estimating the total monthly savings is:

1.
SlY = *Hmonth * P}wur * DlY * RIIY
2.
S3y = —Hpmonth * Phour ¥ D3y * RIzy
3.
GS = Sy + S3y
Where:

e RIy and RlIsy represent the recommended net new capacity (e.g. in virtual

machine instance count) for 1 year and 3 years RI terms.

e Djy and D;y are the estimated percentage discounts for 1 year and 3 year Rls
for the specific VM type extracted from the current broad combination (BC).

e Pyoyr is the standard pay-as-you-go hourly price of the relevant VM, derived
from the pricing CSV.

o H,onith, represents the number of hours in a month. It is set to 730, as we

assume a continuous use of the VM.

The resulting GS value represents the projected monthly financial negative saving
anticipated from implementing the system’s RI recommendations for a given broad
combination. This quantitative impact assessment is a pivotal output, providing the
necessary justification for commitment decisions and forming a key component of

the final recommendation report presented to clients.
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Illustrative Application and Financial Impact

In practice, the system analyzes historical consumption to generate forecasts (e.g.,
six-month or longer) for the daily vCPU Usage Intensity (I) at aggregated BC
level (e.g., BS Series VMs in West Europe for a specific client). For workloads
demonstrating stable forecasted demand (e.g., consistent 8 vCPU daily intensity
from four E2a v4 instances), the methodology recommends reserving the appropriate
number of VMs (e.g., four E2a v4 instances, or an equivalent vCPU capacity using
the most cost-effective instance sizes within that series) for the calculated optimal
terms.

Recommendations prioritize covering the stable baseline (GR) with the 1-year/3-
year split informed by forecast volatility. The system quantifies the financial impact
by calculating projected monthly savings against estimated Pay-As-You-Go costs
(e.g., a hypothetical 61% discount yielding €1524.70 monthly savings for an illus-

trative Eav4 scenario if fully committed under optimal terms).
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Alpha Stability

4.1 Context

FinOps focuses on rightsizing cloud usage and optimizing cloud costs on platforms
like Microso Azure. A widely adopted cost optimization strategy involves resource-
based commitments—such as Reserved Instances (RIs)—to reserve specific types of
Virtual Machines (VMs) in designated regions. This approach is oen considered one
of the most effective ways to reduce cloud spend. However, in environments with
large VM fleets, managing reservations at the individual resource level becomes
increasingly tedious and inefficient. To address this, many organizations choose to
reserve VMs in bulk at higher levels of the organizational hierarchy, targeting groups
of VMs with similar characteristics. While this top-down, holistic strategy improves
manageability and reservation coverage, it introduces trade-offs: reduced visibility
into individual workloads and uncertainty about whether the applications running
on these VMs will continue to be used over time. This makes it more difficult to
determine the optimal reservation scope and term. A promising way to address this
challenge is by evaluating the stability of the applications running on the VMs. Ap-
plication stability provides a more business-aware perspective, which is often missing
from standard usage forecasts. By factoring in stability, reservation recommenda-
tions become more reliable—for example, avoiding commitments on VMs running
short-lived or unstable workloads. In addition, application stability can serve as a
valuable feature for forecasting usage patterns, helping to model demand volatil-

ity more accurately. Our methodology analyzes the cloud billing data of over 70

49
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companies (we will refer to it as the dataset) to derive stability insights based on
historical VM usage. These insights can then be integrated into predictive models
through supervised learning and unsupervised hierarchical clustering, using tech-
niques such as Levenshtein distance and linkage analysis. A key part of this process
is the estimation of an application stability metric (alpha), computed by analyzing
normalized application usage over time. By systematically identifying relevant tags
and standardizing application names, we create a robust framework for associat-
ing usage patterns with specific applications. This enables a scalable, data-driven
approach to assessing workload stability and improving cost optimization decisions

within the Azure environment.

4.2 Details on the Data

This study is empirically grounded in data derived from the Microsoft Azure cloud
environment, specifically utilizing consolidated cloud billing records from a cohort
of over 70 organizations. For the purposes of this research, the initial, unprocessed
collection of this information will be referred to as the “dataset”. Subsequent trans-
formations and subsets of this data will be defined as they are introduced throughout

this work.

A foundational aspect of our data processing methodology involved determin-
ing the optimal sequence for two principal analytical stages: (1) the identification
and extraction of execution environment information, and (2) the classification of
application-related tag keys followed by the clustering of their corresponding tag
values. After careful consideration of data characteristics and analytical objectives,
the extraction of environment information was strategically prioritized to precede
the application-specific data refinement processes. This decision was deduced on
a key observation regarding data scope: attributes pertinent to application iden-
tification and characterization represented a relatively small fraction of the overall
dataset. Conversely, indicators of execution environments were found to be more
pervasively distributed across the data. Performing application-centric filtering at
an earlier stage would have resulted in the premature exclusion of a significant vol-
ume of data. While this excluded data might not be directly related to application
specifics, its retention during the initial environment extraction phase was deemed
crucial for preserving broader contextual integrity, which could be vital for com-
prehensive analysis or for accurately mapping refined application data back to the
original, more expansive dataset. Therefore, by addressing environment extraction
first, we aimed to maximize the information available for, and the contextual richness

of, the subsequent, more granular application-level analyses. Finally, we consider
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the dataset as a whole and do not proceed to the filtering of data that would be

considered as noisy in other setups.

4.3 Extracting Relevant Tag Keys

Tags are a critical component of billing and metadata management. By allowing
users to assign key—value pairs to resources, tags enable categorization by usage,
ownership, application, and other business dimensions. However, tagging conven-
tions are inconsistently applied in practice, with widespread deviation from expected
structures. In particular, the challenge of identifying VMs associated with applica-
tions emerges due to the lack of standardized naming practices. Although some tag
keys clearly reference applications ("application", "app", etc) there is no universal
or enforced convention. This results in high variability and semantic ambiguity in
the tags used. An early attempt to solve this through a rule-based system (nested
if statements) quickly revealed its limitations in terms of scalability and maintain-

ability. It became evident that a more intelligent, adaptive approach was required.

4.3.1 Baseline Model: Naive Bayes Classifier

The first machine learning-based solution implemented was a Naive Bayes classifier.
Naive Bayes is a probabilistic model based on Bayes’ theorem, which calculates the

probability of a class C given a set of features F:

F|C) % P(C)
P(F)

pcjp) = £

The “naive” part is its core simplifying assumption: it treats all features as
independent of each other given the class. This allows the likelihood P(F|C) to be

calculated simply as the product of individual probabilities:

P(FIC) =[] PUIC)

Thus the model predicts the class C that maximizes P(C) * [[; P(f;|C). It was
initially chosen due to this inherent simplicity, computational efficiency (especially
with high-dimensional data), and ease of interpretability, making it a suitable base-
line model, particularly when working with limited initial datasets or when a fast,
understandable first pass is needed. It was trained on a small set of manually labeled
tag keys using a basic feature set. The tags were extracted from our initial data
from 70 companies. They were labelled thanks to the expertise of domain experts.

This approach yielded an initial accuracy of 0.8558.
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However, upon inspection, the model demonstrated systematic misclassifications,
notably false positives and false negatives, that domain experts could intuitively
refute. In order for the classification to be deemed reliable our model needed to
achieve at the very least 0.95 accuracy, to ensure that application-related tags were
in fact classified as such. This highlighted the limitations of Naive Bayes in capturing

the complexity of the tagging noise and the need for a more expressive model.

4.3.2 XGBoost: A More Robust Solution

To address these shortcomings and capture the intricate patterns missed by Naive
Bayes, the next iteration involved implementing an XGBoost (Extreme Gradient
Boosting) classifier. XGBoost is a powerful and widely-used gradient boosting frame-
work based on decision tree ensembles. In a classification setup, it was selected for

the following reasons:

o Ensemble Method (Boosting): Instead of relying on a single model like Naive
Bayes, XGBoost builds an ensemble of decision trees. It does this sequentially:
each new tree is trained to correct the errors (specifically, the residuals or
gradients of the loss function with respect to the predictions) made by the
ensemble of previously trained trees. This iterative refinement process allows

the model to gradually improve its predictions

e Regularization: A key strength of XGBoost is its built-in regularization tech-
niques (L1 - Lasso, and L2 - Ridge regularization on tree complexity and leaf
weights). This helps prevent overfitting by penalizing overly complex models,
leading to better generalization on unseen data. This is crucial when moving
from a simpler model like Naive Bayes, as more complex models have a higher

risk of overfitting.

e Handling Complex Interactions: Unlike Naive Bayes’s feature independence
assumption, the tree-based structure of XGBoost naturally models non-linear
relationships and interactions between features. The model can learn that the
effect of one feature depends on the value of another, which was likely a source

of Naive Bayes’s misclassifications

o Efficiency and Scalability: XGBoost is designed for computational speed and
efficiency. It incorporates techniques like parallel processing for tree construc-
tion, cache-aware access, and out-of-core computation, making it suitable for
larger datasets and faster training cycles compared to some other gradient

boosting implementations.

By leveraging these characteristics, XGBoost was expected to provide a signif-

icant uplift in performance, better capture the nuances of the tagging data, and
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overcome the systematic errors observed with the Naive Bayes model. The setup
of the XGBoost model and appropriate data engineering techniques involved the

following steps:

e Manual Labelling: An initial set of 118 manually labeled tag keys extracted
from our dataset was established. Covering both application-related and unre-
lated examples. Given the limites size and class imbalance, the dataset alone

was insufficient without augmentation.

o Data Normalization: Before training all tag keys were normalized by trans-
forming the characters in lowercase, removing whitespace and applying unicode

normalization.

e Data Augmentation: We developed functions that could augment the data
by creating variants of each tag keys. Such functions would swap characters,
randomly insert or delete characters or reorder the tag key by chunks given a

delimiter. This would mimic typos and common naming habits.

o Feature Engineering: each tag key (original and augmented) was vectorized
using a rich feature set encompassing lexical features, semantic proximity with
words such as "application" or "app", syntactic features and diversity metrics

(entropy and unique character ratio).

e Class Imbalance: Naturally the dataset exhibited a strong class imbalance,
with a majority of tag keys unrelated to applications. We addressed this
using oversampling of the minority (positive) class within the training split to

improve learning sensitivity.

e Hyperparameter Optimization: To optimize the XGBoost classification task
beyond the Naive Bayes baseline and various augmentation we set up to en-
hance our models’ robustness, a hyperparameter search was conducted using
k-fold cross validation GridSearchCV. This process allows to iteratively train,
validate and test a set of hyperparameters. The best set of hyperparameters

is then saved and the final model uses them.

4.3.3 Results and Evaluation

To train and later test our model we followed the standard procedure using 70% of
our labeled dataset for the training process and the 30% remaining for the testing
process, in order to evaluate our models’ performance on unseen data. The training
data was shuffled to ensure no bias was made with our labeling order. The optimized
XGBoost model, trained on our augmented and feature-engineered dataset, achieved
a significantly higher accuracy of 0.9576.

Compared to the Naive Bayes baseline, this model demonstrated:
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e Superior precision and recall.
» Reduced false positives/negatives.
o Better alignment with expert intuition.

This confirmed that XGBoost could capture the nuanced patterns necessary for
reliable tag classification in noisy environments. Beyond accuracy, a detailed analysis
of classification metrics reveals a model that is both precise and balanced. As shown
in Table 4.1 below, the Fl-scores are identical for both classes (True and False) at
0.96, indicating that the model maintains an excellent trade-off between precision

and recall regardless of whether the tag key refers to an application or not.

Precision Recall F1-Score Support

False 0.94 0.98 0.96 60
True 0.98 0.93 0.96 58
Accuracy - - 0.96 118
Macro Avg 0.96 0.96 0.96 118

Table 4.1: Tag Keys Classification Report using XGBoost

This is critical in our context, as both false positives (irrelevant tags wrongly
classified as application-related) and false negatives (missing actual application tags)
could significantly distort downstream analyses. The trained model was then used
to classify every unique tag key in our dataset. Only keys predicted as application-
related were retained, and corresponding tag values were interpreted as application
names (referred to as application-related dataset). This step served as a critical
filtering mechanism, ensuring that downstream analyses focused solely on relevant
application-level data. This process could be criticized but we only had this dataset
to base ourselves on. In-fine, the model was trained, tested and deployed on the same
dataset. Results before and after the classification can be observed in Table 4.2.
When using the Naive Bayes classifier, tag keys such as app_ owner and app_ leader
were classified as True, because of the “app” sequence. Thanks to the particularities

of the XGBoost model, no such misclassification happened

Tag key Classification
environment False
application True
app__owner False
applicion True
app__leader False

Table 4.2: Sample of classified tag keys. Small variations are under-
stood by the model and only application-related tag_keys are kept.
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By resolving the ambiguity and inconsistency inherent in user-defined tags through
supervised machine learning, this work successfully mitigates a key technological
lock-in: the lack of standardization in tagging practices across Azure tenants. The
approach is scalable, adaptive to new data, and demonstrates strong generalization
capabilities in the face of real-world noise such as typos, naming variability, and in-
consistent formatting. Ultimately, it enables more reliable and efficient exploitation

of billing metadata for intelligent cloud infrastructure management.

4.4 Normalizing Tag Values

Following the successful classification of tag keys, the next logical step was to focus
on the normalization of tag values. These tag values, representing application names
associated with the now-identified relevant tag keys, originated from a dataset de-
rived from 70 companies. Specifically, we utilized the subset of this data where tag
keys were classified as application-related by our previously developed model. The
challenge at this stage was to address the inconsistency in naming conventions, as
different string representations of the same application were often used. For instance,

a single application-related tag key could be linked to multiple, slightly varied tag

non non

values (e.g., "citricx_server," "citrix," "citrix_prd", all correspond to the “citrix”
application). The objective was to consolidate these variations into standardized

names for more accurate downstream analysis.

4.4.1 Initial Approach and Challenges

Initially, to group these semantically similar but textually distinct tag values, we
considered employing a combination of advanced dimensionality reduction and clus-
tering techniques. Uniform Manifold Approximation and Projection (UMAP) was
evaluated as a candidate for dimensionality reduction. UMAP is a non-linear tech-
nique adept at learning the manifold structure of data and creating low-dimensional
embeddings that preserve both local and global relationships. The intention was to
convert high-dimensional vector representations (e.g., TF-IDF or pre-trained sen-
tence embeddings) of the tag values into a dense, lower-dimensional space (typically

2D or 3D) where similar values would ideally be positioned closely.

Subsequently, Density-Based Spatial Clustering of Applications with Noise (DB-
SCAN) was considered for the clustering phase. DBSCAN is advantageous as it can
identify clusters of arbitrary shapes and does not require the number of clusters to
be specified beforehand; it groups together points that are closely packed (points
with many nearby neighbors within an epsilon radius) and marks as outliers points
that lie alone in low-density regions. However, this approach proved computation-

ally prohibitive due to the sheer volume of unique tag value instances present in
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the dataset. UMAP’s initial step involves constructing a k-nearest neighbor graph,
which, even with optimizations, scales at least super-linearly (often cited around
O(N log(N)) to O(N'1) with approximate methods) with N the number of data

points.

DBSCAN in its naive form, has a time complexity of O(N?) due to pairwise
distance calculations, though this can be reduces to O(N log(N)) on average with
spatial indexing. Given the potentially hunderds of individual tag value instances to
process, the computational cost on the machines we had at work for both UMAPs’
graph construction and DBSCANSs’ density estimation became a significant bot-
tleneck, rendering this combined strategy impractical for our need. In fact, some
execution times for a simple clustering of poor quality took up to 30 minutes. In
addition to this, the use of predefined vocabularies for UMAP to embed our tag val-
ues was unnecessary as we work with a very niche type of data which didn’t justify

the use of external data to compute extensive embeddings.

4.4.2 Simplified Approach with Unsupervised Clustering

As a result, we pivoted to a more practical and straightforward solution: unsuper-
vised hierarchical clustering based on string similarity, specifically using the Leven-
shtein distance (edit distance). The Levenshtein distance quantifies the similarity
between two strings, say strl of length m and str2 of length n, by calculating the
minimum number of single-character edits (insertions, deletions, or substitutions)

required to change strl into str2.

The choice of Levenshtein distance over other text-based metrics was deliberate,
driven by its suitability for the specific types of variations observed in application
names — typically minor misspellings, presence/absence of separators (hyphens, un-
derscores), case differences (though often handled by pre-processing), or slight vari-
ations in abbreviations. Also it is the most widely used when it comes to clustering
values that have a common baseline (e.g. “qlick-cloud”, “qlick-server” belong to

“glick” cluster).

This direct string metric was chosen over the embedding-based UMAP and DB-
SCAN approach primarily because our analysis indicated it was significantly more
computationally efficient for the task at hand. While calculating a pairwise Leven-
shtein distance matrix for N strings has a complexity related to O(N? x L?) (where
L is the average string length), this proved more tractable than the complex graph
construction of UMAP and the neighborhood searches of DBSCAN when applied to

the vast number of tag value instances.
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More importantly, this unsupervised learning approach directly addressed our
specific need: identifying clusters of textually similar strings without relying on pre-
defined labels or complex feature transformations into an embedding space. The
Levenshtein distance provides an intuitive and direct measure of orthographic vari-
ation appropriate for capturing minor naming inconsistencies, and hierarchical clus-
tering allows for an interpretable grouping based purely on this textual similarity.
This made it not only less compute-intensive but also highly appropriate for the
nature of our data and the goal of standardizing application names based on their

surface-form variations.

4.4.3 Data Processing and Clustering Process

Before proceeding with clustering, we applied a preprocessing pipeline to the tag
values to standardize the data. This involved converting all text to lowercase,
removing accents, eliminating non-alphanumeric characters, and trimming excess
whitespace, resulting in the creation of preprocessed tag values. Additionally, val-
ues that contained special characters often associated with non-application names
(such as email addresses or URLs) were filtered out. Strings exceeding 20 charac-
ters post-preprocessing were also discarded to eliminate potential noise from overly

lengthy entries.

Hierarchical Clustering

The clustering process started by computing the Levenshtein distance between ev-
ery unique pair of preprocessed tag values. This exhaustive pairwise comparison
yielded a symmetric NxN distance matrix, where N is the number of unique tag
values. To optimize memory usage and streamline input for the subsequent clus-
tering algorithm, this full matrix was transformed into a condensed 1D array using
scipy.spatial.distance.squareform.

This condensed form efficiently stores only the N(]\;_l) unique distances from

the upper (or lower) triangle of the symmetric matrix, which is the standard input
format for SciPy’s linkage function. This condensed distance vector was then fed
into the hierarchical clustering algorithm, specifically using the ’average’ linkage
method (UPGMA - Unweighted Pair Group Method with Arithmetic Mean). This
method iteratively merges the closest pair of clusters, where the distance between
two clusters is defined as the average of all pairwise distances between elements in one
cluster and elements in the other. This agglomerative process builds a dendrogram,
a tree-like diagram that visually represents the hierarchical relationships and the
distances at which successive fusions occurred. Finally, this dendrogram was ’cut’

at a predefined distance threshold to derive a flat set of distinct tag value clusters.
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Over our application-related dataset, to determine the appropriate clusters, a
distance threshold was applied to the dendrogram. In this case, we specified a
normalized absolute edit distance of 0.7 as the cutoff for cluster formation. After
multiple tries, this threshold yielded the best results, it ensured that only tag values
that were sufficiently similar to each other were grouped together. In fact a threshold
set to 2 or 3 output clusters that were too granular where they could have been
grouped in a single application. For example, cluster 1 C; = {solulabo-champ} and
cluster 2 Cy = {solulabo2mc}, both contain information about one single application
"solulabo", and should be grouped together. On the other hand, high values like 8
or 9 output clusters that were too general. For example cluster 1 C; = {citrix,
cegid}. The presence of letter "¢" and "i" combined with a high threshold can lead

to incorrect clustering.

Once the clusters were formed, a representative name for each cluster was chosen
by selecting the cleaned tag values member that exhibited the lowest average nor-
malized Levenshtein distance to all other members within that cluster. This value
served as the cluster app, a standardized name representing each application for

each row in our dataset.

Final Mapping

Tag value Cluster app

OWP owp
citrix citrix
dotcom dotcom
palo-alto paloalto
paloalto paloalto

DOTCOM dotcom

citrixserver citrix

Q-lick glick
Dtcom dotcom
glick qlick

Table 4.3: Example of a few tag value / cluster app associations

In our dataset with only application-related tag keys, each original tag value
was mapped to its corresponding cluster app name, effectively normalizing the data.
This process consolidated variations in application naming and allowed for grouping
and analysis based on consistent, standardized labels. The outcome was a set of
normalized application names that reduced the complexity and inconsistencies in-
herent in the raw data, paving the way for more reliable downstream analysis. Some

results of that mapping can be seen in Table 4.3.
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4.4.4 Results and Evaluation

Evaluating unsupervised clustering is inherently more challenging than supervised
classification because there are typically no "ground truth" labels to compare against
directly. However, we can use several intrinsic metrics, along with qualitative anal-
ysis. One of those metrics is called the Silhouette Score. This score measures how
similar an object is to its own cluster (cohesion) compared to other clusters (separa-
tion). The score ranges from -1 to +1, where a high value indicates that the object
is well matched to its own cluster and poorly matched to neighboring clusters. If
the score is close to 1, the clustering is dense and well separated, if the score is
close to 0, then some clusters overlap and could be better separated (not considered
bad though). However, when close to -1, it indicates that some samples have been

assigned to the wrong cluster.

Normalized Threshold Value Silhouette Score

0.1 0.086
0.2 0.083
0.3 0.217
0.4 0.226
0.5 0.249
0.6 0.295
0.667 0.304
0.7 0.298
0.8 0.248
0.9 0.157

Table 4.4: Test of the normalized threshold value. The best perform-
ing threshold is 0.667 outputting a score of 0.304.

When calculating this metric on our application-related dataset we obtain a score
of 0.298, which is obtained with a threshold of 0.7 (cf. Table 4.4). We can see that

small threshold variations can lead to important silhouette scores.

A positive score means our clustering algorithm is finding some level of grouping
that’s better than random. Points within the same cluster are, on average, more
similar to each other (based on Levenshtein distance) than they are to points in other
clusters. And, the low positive value suggests that many data points might lie close
to the decision boundary between neighboring clusters. This means some tag values
could plausibly belong to more than one cluster. However, for text data, especially
when using edit distances like Levenshtein, achieving very high Silhouette Scores can
be challenging. String variations can be gradual, and clear-cut boundaries are less
common than in, say, numerical data with distinct distribution. Given this score

and a manual cross check across more than 400 clusters, we can confirm that this
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is a good enough score and the process seems to yield interesting results for a first

version.

4.5 Normalizing Environments

As mentioned in the introduction of this chapter, optimizing cloud resource utiliza-
tion is very important for cost efficiency and performance. Azure Reservations offer
significant savings for long-term Virtual Machine (VM) commitments, but their true
value relies on the predictable usage of the underlying workloads. A critical factor
influencing this predictability is the stability of the application on which these VMs
are running. However, it is even more interesting to know what kind of environment
the virtual machine is running on. To corroborate this environment as well as the
application, to later compute their joint stability represents a very interesting insight
for recommendation. Assessing environment/application stability provides crucial
insights, enabling more granular and reliable reservation recommendations; recom-
mending a reservation for a VM running on an unstable environment like “testing”
or “sandbox" may not yield the expected benefits. Furthermore, understanding sta-
bility serves as a vital implicit feature for accurately modeling VM usage fluctuations

over time.

However, deriving consistent environment information directly from Azure VM
tags is quite tricky due to inconsistent naming conventions, ambiguous tag_ keys, and
variations in tag_values or resource ids. This section addresses the question: How
can we normalize Azure environments? The primary objective of this methodology
is to accurately and consistently identify the operational environment (e.g., Pro-
duction, Development, Staging) for each Azure resource represented in our dataset.
This is essential for subsequent analyses, such as cost allocation, stability assess-
ment (in our case), and resource optimization. A significant challenge arises from
the inherent inconsistency in how environment information is recorded within Azure;
it may be present in resource naming conventions, resource group names, specific
tags, or dedicated metadata fields, often with non-standardized nomenclature and
varying degrees of reliability. Therefore, a robust methodology is required to system-
atically analyze multiple potential sources, resolve ambiguities, and derive a single,

standardized environment identifier for each resource instance.

4.5.1 Extracting Relevant Environment Information

In the Azure environment, execution environments are something quite tricky to
properly identify. Similarly for the application information introduced in the pre-
vious sections, there are no standardized naming conventions that exist, because

environments can be set automatically or manually. Both of these versions often
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don’t match, which makes the analysis even harder. Our initial thought to extract
relevant information from the environment-related columns was to make a classifi-
cation model using supervised learning. This would be a multi-class classification,

and the model would be trained on manually labelled data.

Data Sources

Our model would be based on the following source columns within our dataset:

o subscription__name: The name of the Azure Subscription which includes or-

ganizational, environment and, occasionally, application naming conventions.

e resource_group: The name of the Azure Resource Group, which often follows

organizational naming conventions that include environment indicators.

e resource_id: The unique Azure Resource ID. Specifically, the terminal segment
corresponding to the resource name (e.g., Virtual Machine name) is extracted,

as it frequently incorporates environment codes
o tag_key unfiltered: The key associated with an Azure tag.

e tag walue: The value associated with an Azure tag. This is considered a pri-
mary source when the corresponding tag_key unfiltered explicitly indicates

an environment context (e.g., key is ’environment’).

o environment: A dedicated prebuilt environment column. If present in the
source data, intended to store the environment explicitly. However, it presents

inconsistencies with the resource group information.

As it turns out, this approach was going to be extremely difficult. The structure
of the information contained in these columns is extremely complex, and the labeling
task would have taken a lot of time and expertise. The reason for this was that we
couldn’t anticipate the number of classes that were to be expected, for the simple
reason that there is no convention. Theoretically, there could be as many classes as
the person inputting the environment would want to. Then, it would mean an exten-

sive processing and labeling step in order to have training-ready data. Thus, keeping

the same data, we decided to fall back on a pseudo-exhaustive regular expression
approach. Doing this would lose the “intelligence” of a machine learning approach,
but would simplify the task greatly, saving lots of time in labeling, processing and

tuning the model while remaining data-driven.
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Environment Lexicon and Standardization

To handle variations in nomenclature, a controlled vocabulary and mapping strategy

were established:

e Canonical Environment Identifiers: A definitive list of standardized, lowercase

environment identifiers used as the final output values (e.g. ‘prd’, ‘tst’, ‘sta’,
‘dev’).

e Canonical Environment Map: A dictionary mapping various observed lower-
case variations and synonyms (e.g., 'prod’, 'production’, ’stg’, ’staging’, ’de-
velopment’, ‘test’) to their corresponding canonical target. This ensures that

different input strings representing the same concept are normalized.

o Environment Pattern Recognition: A dictionary where each key is a canonical
target identifier, and the value is a pre-compiled regular expression pattern.
The patterns are applied case-insensitively, as we normalize all values by con-

verting them to lowercase.

e Valid Canonical Environments: A set derived directly from the canonical iden-

tifiers, used for final validation of identified environments.

All these elements are used to build an exhaustive filter, where by processing
combined information from our columns we are able to extract the environment

information in an elegant way.

Candidate Extraction and Cleaning

Following the development of the rule-based regular expression system for identifying
environment indicators (referred to as "pattern-catcher"), a structured methodology
was required for its application to the dataset. A primary consideration was the
potential for multiple source columns within a single record to yield environment-
related matches (e.g. column resource group contains ‘prd’ and column tag key
contains ‘dev’ on the same row) This necessitated a strategy to resolve instances
where conflicting environment indicators were detected across different attributes, a
scenario anticipated due to the previously identified inconsistencies in environment

naming conventions.

Consultation with domain experts led to the establishment of a hierarchical prior-
itization scheme for analyzing the source columns. This hierarchy dictates the order
in which columns are interrogated for environment information and the precedence
given to a match from a higher-priority source. The rationale for this prioritization
is based on the perceived reliability and explicitness of the environment information

contained within each source. The process for identifying potential environment
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indicators (candidates) from the designated source columns within each data record
involves several distinct stages, designed to ensure systematic and contextually rel-

evant extraction.

The extraction of environment identifiers follows a multi-step, standardized pro-
cess to ensure accurate and consistent labeling. First, all textual inputs undergo
normalization by converting them to lowercase and trimming whitespace. Attributes
explicitly designated to represent environments—such as user-defined tags—are an-

Y

alyzed only if their keys match a predefined list (e.g., ‘env’, ‘environment’) after
cleaning. For structured identifiers (e.g., resource names), regular expressions iso-
late semantically meaningful segments, which are then normalized. A curated set of
regular expression patterns is applied to these normalized strings to detect canonical
environment labels (e.g., ‘production’, ‘development’). Finally, all matched identi-
fiers are consolidated into a structured set representing the environment context of

each data record, enabling further analysis and conflict resolution.

To resolve conflicting environment identifiers extracted from multiple sources,
a strict prioritization and selection logic is applied. Sources are ranked by reliabil-
ity: user-defined environment tags are considered most explicit, followed by resource
group names, subscription names, VM names, and finally a default environment col-
umn. For each resource, the first valid canonical environment found in this priority
order is selected. If multiple identifiers are found within a top-priority source, the

first match or a deterministic fallback (e.g., alphabetical order) is used.

4.5.2 Results of the Environment Extraction

After executing our environment extraction procedure on our dataset, we can observe
that our method outputs the actual environment that was imputed in the columns
such as resource_group or subscription_ name as seen in Table 1. We observe that
most of the time, because the tag key column has empty values (or non environment-
related values), the priority of the environment comes back to what was found in
the column resource group or subscription name.

The key takeaway here is that our method is able to get the correct environment
out of the analyzed columns, respecting a priority order to have a much better and
granular understanding of the environments used on various resources. To this day,
this method has proved itself better than the initial one that created the environ-
ment column. And we can see from Table 4.5, that it is consistent. Evaluation of
the environment extraction method on a test dataset comprising 100 samples with
defined ground truth labels yielded an overall accuracy of 95%. This indicates a high
level of agreement between the extracted and true environments, with a total of 5

misclassified instances observed within the analyzed subset. Performance analysis,
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sub__name res_group res_id tag key tag value env real env
..-DEV ..-DEV mdv non_prd dev ..-DEV  dev
...DEV ...-DEV non_prd dev ...-DEV  dev
...PRD ...PROD non_prd prd
..-STG ..-STG ...-st non_prd sta
...-NONPROD ...-QA ..mqa non_prd qa non_prd qa

Table 4.5: Sample of the dataframe containing the extracted envi-
ronment. In red we display the correct environment when it is found
in the analyzed columns. Elements that are not environment-related
have been set as "...". The columns called "res" are short for "re-
source", the one called "sub" is short for "subscription".

supported by the classification report, demonstrates robust classification capability
for the most frequently occurring environments. While performance on less com-
mon environments varies, some achieved perfect classification scores, whereas others
exhibited instances of reduced recall or precision. Specific analysis of misclassifica-
tions highlights patterns including the incorrect assignment of samples to labels not
present in their true distribution, and the misclassification of some less frequent true

environments as other categories.

Not only are we able to keep a computationally viable option, we don’t need to
leverage clustering or supervised learning to achieve such results. This method using
multiple columns for the analysis allows us to keep a larger amount of data, in fact,
if we only wanted to focus on user input tag keys that referred to environments, and
then focus on extracting the environment, we would discard a substantial amount
of data from our analysis. Additionally, the initial environment column covered
around 93% of the data, whereas our method covers 97% of the data with increased

precision and reliability.

4.6 Estimating Application-Environment Stability

To quantify the stability of applications within Azure environments, the study in-
troduces a metric «, ranging from 0 (unstable) to 1 (highly stable), computed for

each application-environment pair based on historical usage data.

4.6.1 Initial Approaches
Several preliminary methods were considered:
o Standard Deviation (¢): Simple variability measure, but lacked normaliza-

tion relative to usage level leading to over-sensitivity to outliser and under-

representation of meaningful shifts.
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o Min-Max Normalized Standard Deviation: This normalized usage to the [0, 1]
range before applying standard deviation, yielding a more relative measure of
volativity. However, it failed to capture absolute shifts in usage levels and was

insensitive to longer-term trends.

e Hybrid CV + Trend Model: Combined the Coefficient of Variation (CV) with
Relative Trend Strength (T) in an exponential decay function to compute
«. While promising, it was overly sensitive to hyperparameter tuning and
lacked responsiveness to recent behavioral changes - often missing stabilization

patterns in more recent data.

Due to these limitations - particularly the inability to differentiate between recent
and historical stability and the high sensitivity to configuration- we sought a more

adaptive model.

4.6.2 Refined Approach: Dual Horizon Model

The final model introduces a temporal dual-horizon strategy to capture both short-

term and long-term stability dynamics:

¢ Two Horizons:

— Short-Term (e.g. 15-60 days)
— long-Term (e.g. 180-360 days)

For each horizon the following procedure was applied:

e Trend Filtering: Fit a linear regression to the vCPU daily usage intensity time
series of the application cluster I.,ster. If the slope f is below a threshold
(e.g. PBthresh, -0.01 to -0.05), the usage is considered to be in decline, and the

horizon stability score aporizon is set to 0.

o Volatility Scoring: If 8 > Binresh, compute o, the average of the standard
deviations over sliding windows (e.g. 7-14 days). The per-horizon stability
score is then calculated via an exponential decay function parametrized by a

deccay constant v (> 1) penalizing erratic usage.

Finally, the alpha score is computed by merging the two horizon scores in a

weighted average:

A final = W.Ashort + (1 - w)~along

where w € [0,1] (e.g. w = 0.667) prioritizes recent activity while still incorpo-

rating historical consistency.
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This refined model successfully balances recent trends with long term consis-
tency, while remaining tunable yet robust to noise, making it a superior solution for

application-environment stability.

4.6.3 Results and Evaluation

Following the estimation of application-environment stability scores («), the results
are compiled into a structured Alpha Catalog, a precomputed lookup table that
associates each (application, environment) pair with a corresponding « score. This
catalog forms a core component of downstream analytical pipelines, particularly
those related to Virtual Machine (VM) Reservation recommendations in the Azure

cloud.

Purpose and Integration

The Alpha Catalog is designed to enable efficient reuse of stability insights across
multiple analytical contexts without recomputing the a metric in real-time. It is
built to enrich cost optimization pipelines with contextual, behavior-driven features
that go beyond raw utilization metrics. The Alpha Catalog is a DataFrame that
has 3 columns "application_ cluster', "environment", "alpha_ score". It is built only

once after the applications have been clustered, and the environments normalized.

Figure 4.1 illustrates the process of creating the catalog. The creation of the
Alpha Catalog, which quantifies the stability of an application within a given en-
vironment, follows a multi-stage pipeline originating from the client billing data.
The process bifurcates into streams focused on identifying application identity and

extracting environment information, respectively.

The application identity stream begins with tag key classification, employing a
binary classification model (specifically, an XGBoost classifier) trained to distinguish
tag keys related to applications from others. This filtering step yields a set of
application-related tag keys. These keys are then used to isolate the corresponding
application values (names) from the billing data. Subsequently, these raw application
names undergo clustering, utilizing a syntactic approach (as detailed in Section X,
referring to your clustering methodology) to group variations of the same application

name into standardized clusters.

In parallel, the environment extraction stream applies a rule-based approach,
likely using regular expressions, to identify and extract environment information
from various source columns within the billing data (as detailed in Section Y, refer-

ring to your environment extraction methodology).
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The pipeline converges by combining the outputs from the application name clus-
tering (the standardized application clusters) and the environment extraction (the
identified environments). A final process, takes these paired (application cluster,
environment) combinations. For each unique pair, this process calculates a stabil-
ity metric (alpha), which quantifies the historical consistency and predictability of
the workload associated with that specific application cluster running in that par-
ticular environment. The resulting Alpha Catalog is a repository mapping these

(application, environment) pairs to their calculated alpha stability values.

The catalog is used in the following way:

« Billing Data Annotation: During the preprocessing, each record in the billing
dataset is associated with its corresponding standardized environment and

application.

o Lookup and Retrieval: The precomputed « score for the given (application,

environment) pair is retrieved from the catalog.

The Alpha Catalog enhances operational reliability by enriching forecasting mod-
els with historical consistency indicators, enabling more precise VM reservation rec-
ommendations that avoid unstable workloads and reduce financial risk. Beyond
raw usage, the « score also provides behavioral context about workload maturity.
To ensure performance and scalability, computationally intensive processes—such
as tag classification and clustering—are decoupled from real-time analysis and exe-
cuted periodically or upon specific triggers, maintaining up-to-date stability insights

without impacting the whole systems’ latency.

Application-Environment Stability Evaluation

A visual evaluation and cross-check with expert knowledge was the only way to
evaluate our approach. For instance, a classic case was analyzed by observing the
aggregated daily usage of a sample application across two distinct environments:
staging (’sta’) and production ('prd’). The staging environment exhibits substantial
temporal variability, characterized by significant fluctuations and a cyclical pattern
in daily VCPU intensity, reflecting high volatility. This profile is associated with a
calculated stability score of 0.000. In contrast, the production environment displays
a stable usage pattern, reaching a consistent level after an initial unstable period,

resulting in a significantly higher stability score of 0.806.
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Alpha Catalog Creation

goal: build a catalog that refers the stability of an application in a given environment

- binary classification with XGBoost
Y . client billing data
- goal: keep the tag_keys that are

related to applications

application keys — unique() -{ application values (names)

Clusters of
application names cluster_tag_values()

- h—
goal: cluster

application names
(syntaxic approach)

Alpha Catalog:
create_alpha_catalogl) alpha(app, env) = stability of the
app in the given env
(production, pre-prod, test etc..)

environment extraction- regular
expression-based filtering
Xtract true environment

nformation from multiple columns

Figure 4.1: Diagram of the pipeline, starting with the client billing
data, ending with the alpha catalog. It leverages the tag key classi-
fication, tag value clustering, and environment extraction.

This clear divergence in calculated stability scores validates the proposed hybrid

quantitative approach. The method effectively differentiates these profiles by inte-

grating trend () and volatility (o) metrics over defined temporal horizons. Specif-

ically, the high variability observed in the staging environment corresponds to a

large volatility measure (o), which, via the exponential decay function, heavily pe-

nalizes the per-horizon stability scores («), leading to a low final weighted score.

Conversely, the stable usage in the production environment indicates low volatility

(o) and a non-declining trend (8 > Binresn), yvielding high per-horizon scores that

are preserved in the final weighted average, accurately reflecting its predictable and

stable operational state. This demonstrates the method’s robustness in capturing

both consistent decline (via 3) and erratic behavior (via o), which are critical factors

in assessing application stability in diverse environments.
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A notable limit case was observed with the aggregated daily VCPU intensity for
another application within a production environment. Over the depicted period,
this second application exhibits consistent near-zero usage. Applying the described
hybrid stability scoring methodology to this profile yields a stability score of 0.999.
This high score is an accurate reflection of the data’s characteristics: the usage trend
(B) is essentially flat (near zero), which is likely above the specified negative threshold
(Bihresh), and crucially, the daily usage fluctuates minimally around zero, resulting
in extremely low volatility (o close to 0). According to the formula exp(—~ * o), a
near-zero o leads to a stability score close to exp(0) = 1, thus correctly identifying

this profile as highly stable in terms of temporal predictability.

However, this case represents a limit where the level of usage is negligible. While
the stability metric correctly quantifies the consistency of the pattern (which is
effectively no pattern of significant usage), it does not assess the utility or relevance
of that usage level for decisions like virtual machine reservation. Therefore, while
the high stability score is technically correct based on the method’s definition of
temporal predictability, the practical implication for resource planning is that this
application’s consistent low usage means it requires minimal or no dedicated resource

reservation, despite its high stability score.






Chapter 5

Research Perspective

This chapter aims at proposing research directions for future work and improvement
of the current state of what we have achieved. We will go through the improvements

for the VMReservation system, and then for the Alpha Stability framework.

5.1 VMZReservation

Given the current state of the system, research should be oriented towards optimizing

the structure (model and logic) of the system in itself.

5.1.1 Advanced Forecasting Model Development

A major issue with our approach is the incapacity XGBoost has to extrapolate the
data. In fact, in a forecasting setup, a key limitation of XGBoost is its inability to
extrapolate beyond the range of values observed during training. As a tree-based
model, XGBoost partitions the feature space and assigns constant predictions within
each region, which makes it effective for interpolation but inherently constrained
when faced with unseen or out-of-range target values. This poses a problem in fore-
casting contexts such as ours, where the objective is to anticipate trends that extend
beyond historical patterns. For example, workloads that exhibit sustained growth
may require the model to project increasing usage; however, XGBoost will instead
plateau its predictions within the historical bounds, potentially underestimating
future demand. This limitation reduces its ability to capture trend dynamics or sea-

sonality, and may lead to inaccurate forecasts that affect downstream decisions such
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as resource provisioning or reservation planning. Consequently, while XGBoost is
powerful for pattern recognition, its lack of extrapolation capability necessitates the
inclusion of trend-aware features or hybrid modeling strategies to address long-term

forecasting objectives effectively.

The most significant improvement for our ML-based approach would be the
adoption of the Temporal Fusion Transformer (TFT) architecture [8] (Figure 5.1).
This state-of-the-art model is well suited to our forecasting challenge, as it is designed
to produce high-accuracy, multi-horizon forecasts while simultaneously handling the
complex mix of static, known future, and historical time-series data inherent to cloud

consumption.

Practically, the model is structured to process distinct types of input data rele-

vant to time series forecasting:

» Static Metadata (s) : information that remains constant for a given time series
(in our case a Broad Combination). These attributes are fed into a Static
Covariate Encoder to create embeddings that influence the entire forecasting

process.

o Past Inputs : the sequence of our engineered time series features (lags, rolling
stats, trend features etc.) and the historical I values. These are processed by

a LSTM Encoder to capture sequential dependencies up to the present time.

o Known Future Inputs: features known for the future horizon (future date parts,
time index, cyclical features, planned events if available). These are processed
by an LSTM Decoder.

The core Temporal Fusion Decoder then combines outputs from the encoders
and static enrichment layers. A key component is the Temporal Self-Attention
mechanism, which allows the model to dynamically weigh the importance of different
historical time steps when making predictions for future steps. This enables the

model to identify relevant historical patterns for forecasting.

Crucially, the model’s output consists of Quantile Forecasts for each future time
step. That is, instead of a single point forecast, TFT predicts a range of possible
values. This direct prediction of a distribution is highly valuable for our RI rec-
ommendation problem, as it inherently quantifies forecast uncertainty and can be
directly used to derive statistically robust lower bounds or other risk-aware metrics
for commitment decisions. Naturally, the TF'T provides a powerful alternative archi-
tecture capable of leveraging our rich feature set and static combination information

to produce probabilistic time series forecasts of Daily vCPU Usage Intensity.
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Figure 5.1: Illustration of the TFT model introduced by Lim et al.
(2020) [8]

5.1.2 Model Deployment and Maintenance

To extend this research towards a robust MLOps framework, the next steps would
focus on automating the forecasting pipeline. This involves implementing auto-
mated model retraining triggers, perhaps based on a fixed schedule (e.g., at the
very least weekly because of data fluctuations) or performance degradation alerts
(e.g., if MAPE on recent sets exceeds a threshold). Continuous model validation
would be key, where newly trained models are evaluated against a holdout dataset
and potentially shadow-deployed alongside the production model before promotion.
For model maintenance, a version control system for models and data (like DVC or
MLflow) would track experiments and artifacts, while comprehensive monitoring of
input data drift, feature drift, and prediction accuracy would provide early warn-
ings for necessary recalibration or more fundamental model redesign, ensuring the

RI recommendations remain accurate and cost-effective over time.

5.1.3 Confidence of Recommendations

In terms of information outputted to the client, it would be good to develop a
certainty metric, showing how confident we are in our recommendation. This can
take into account the historical stability, the forecast stability and the amount of
“risk” the model has taken. As mentioned in section 3.4.1, the stability estimator
could be used to construct a confidence metric. I would be directly linked to the
underlying workload of the virtual machine given an environment and an application

justifying certain decisions.
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5.2 Alpha Stability

Building on the established methodology for assessing application stability, several

potential research avenues present themselves.

5.2.1 Enhancing Tag Understanding

One promising direction is to enhance the semantic understanding of tags beyond
their syntactic similarity. Currently, the approach relies heavily on Levenshtein
distance, which captures character-level similarity. However, incorporating Natural
Language Processing (NLP) techniques, such as word or sentence embeddings by
leveraging corpora of words like BERT, could improve the classification of tag keys
and the clustering of tag values. This would allow the system to better capture
synonymy and conceptual relationships between tags, improving both accuracy and

meaningfulness.

5.2.2 Explainability and Causality

The area of model interpretability and causality is also critical for advancing the
understanding of application stability. Techniques like SHAP (Shapley Additive
Explanations) could be applied to interpret model predictions and explore the factors
driving instability. By correlating calculated instability with external operational
events or logs, we could not only identify that an application is unstable but also gain
insights into why it is unstable, thus providing actionable guidance for improvements.
This would represent a substantial amount of work to provide external data and

verify correlations with outer events.
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Conclusion

This research successfully addressed the critical challenge of optimizing Azure Vir-
tual Machine Reserved Instance (RI) commitments through a novel, data-driven
approach. Recognizing the limitations of traditional forecasting in the complex
cloud billing environment, this study introduced two key innovations: a methodol-
ogy for quantifying application-environment stability (the "Alpha Stability" score)
and a global machine learning model for forecasting VM usage, explicitly designed

to leverage this stability information.

The development of a global XGBoost forecasting model was developed to pre-
dict future Daily vCPU Usage Intensity. This model transitioned from an initial,
computationally prohibitive combination-specific strategy to a more scalable global
approach. Methodological refinements were crucial, including consistent temporal
feature engineering (globally referenced time__index), careful feature selection to ex-
clude unstable predictors (e.g., high-order polynomial time features, overly sensitive
difference metrics), the use of One-Hot Encoding for categorical identifiers (VM
series, location, invoice section, environment), and the engineering of interaction
features between temporal/lag components and these categorical identifiers. Data
integrity measures, such as forward-filling for gaps and a focused training window
on recent, representative data, coupled with time series data augmentation (jitter-
ing, time warping), enhanced model robustness and responsiveness to current usage
patterns. Optimized hyperparameters, identified through Optuna, further improved

predictive performance.
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Concurrently, the Alpha Stability metric, derived from analyzing historical VM
usage for distinct application-environment pairings, provided a robust, quantifiable
measure of workload predictability. This involved sophisticated data preprocess-
ing, including tag key classification using XGBoost and tag value normalization via
hierarchical clustering with Levenshtein distance, to standardize application and en-
vironment identifiers from noisy, heterogeneous billing data. The refined hybrid ap-
proach for alpha calculation, integrating Coefficient of Variation and Relative Trend
Strength over distinct temporal horizons, proved effective in capturing both short-
term volatility and long-term directional shifts, offering a more nuanced stability
assessment than simpler metrics. The resulting Alpha Catalog serves as a valuable
lookup resource, associating each application-environment pair with an empirical

stability score.

While initial tests showed that integrating the Alpha Stability score created a
more complex recommendation model without outperforming a simple heuristic,
the Alpha Catalog itself remains a valuable asset. It provides useful confidence
indicators and holds potential for more nuanced models in the future, and is highly
dependent on the variety of the data is deployed on. In contrast, our work on the
global forecasting model was highly successful. By pairing the refined model with a
robust data and feature filtering strategy, we achieved superior performance (M AE:
0.705, R?: 0.983) with a more streamlined set of features, underscoring the benefits

of a focused analytical input.

To expand the scope of optimization beyond virtual machines, the reservation
of other assets, such as SQL databases, remains a future area of study. This would
allow for targeting other costly services, while of course taking into account the
specific characteristics inherent to each resource type. In parallel, an analysis of
Savings Plans as a commitment method that is complementary or alternative to
Rls is also forthcoming, in order to provide greater flexibility and cover types of
spending not eligible for Rls, thereby completing the overall cloud cost optimization

strategy.

This study successfully established a comprehensive, end-to-end pipeline for RI
recommendation, from raw billing data processing and stability quantification to
forecasting and actionable commitment derivation. The methodologies developed
for application and environment normalization, stability assessment, and global
forecasting provide a solid foundation for intelligent cloud cost optimization. Fu-
ture research perspectives, including advanced forecasting models (e.g., probabilistic

forecasting, TFTs), dynamic filtering, automated feature selection, and enhanced
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MLOps practices for model maintenance and monitoring, promise further advance-

ments in this critical domain of cloud resource management.
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Appendix A: Pipeline Diagram
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Figure 1: Diagram illustrating the entire pipeline of the work com-

pleted during this apprenticeship. On the left is the Alpha Stability

framework, on the right is the VMReservation system. Both are

connected during the inference of VMReservation where a stability

metric will be used to enhance our predictions and reservation rec-
ommendations.
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