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Abstract

The rapid advancements in multi-agent reinforcement learning (MARL) and multi-
agent systems (MAS) have introduced novel approaches to solving complex real-
world problems such as decentralized decision-making, intelligent energy grids, and
collaborative robotics. This thesis explores the challenges and methodologies as-
sociated with load balancing and task allocation in dynamic multi-agent systems
(MAS). I present state-of-the-art review of existing methods, categorizing them into
centralized, decentralized, and hybrid approaches. The study highlights the trade-
offs between scalability, computational efficiency, and robustness in different frame-
works, emphasizing the limitations of static and deterministic algorithms in dynamic
environments. I introduce and analyze centralized methods such as market-based
methods (FMC_TA) and centralized auction-based method (SCA), as well as decen-
tralized game-theoretic and optimization-based techniques, such as the Consensus-
Based Bundle Algorithm (CBBA) and Cooperative Deep Q-Learning (CDQL). Ul-
timately I present hybrid methods leveraging both centralized and decentralized
benefits (CLDS) and Multi-Agent Reinforcement Learning-based methods (CQDL),
demonstrating their effectiveness in adaptive task allocation. The results indicate
that each methods stands with its own benefits and that concepts from each of
them could be integrated into one another. I also conclude that incorporating
learning-based strategies and agent communication enhances system performance
and resilience to uncertainties in dynamic systems.

Keywords: Multi-Agent Systems, Task Allocation, Load-Balancing, Distributed
Artificial Intelligence, Reinforcement Learning, Centralized Methods, Decentralized
Methods, Centralized Training and Decentralized Execution
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Résumé

Les avancées rapides en apprentissage par renforcement multi-agent (MARL) et en
systèmes multi-agents (MAS) ont introduit de nouvelles approches pour résoudre des
problèmes complexes du monde réel, tels que la prise de décision décentralisée, les
réseaux énergétiques intelligents et la robotique collaborative. Ce mémoire explore
les défis et les méthodologies liés à l’équilibrage de charge et à l’allocation de tâches
dans des systèmes multi-agents dynamiques (MAS). Je présente un état de l’art
des méthodes, en les classant en approches centralisées, décentralisées et hybrides.
L’étude met en évidence les compromis entre évolutivité, efficacité computation-
nelle et robustesse dans différents cadres, en soulignant les limites des algorithmes
statiques et déterministes dans des environnements dynamiques. J’introduis et ana-
lyse des techniques centralisées basées sur des approches de marché (FMC_TA) et
d’enchères (SCA), ainsi que des méthodes décentralisées basées sur la théorie des
jeux et l’optimisation, telles que l’algorithme de regroupement basé sur le consen-
sus (CBBA) et l’apprentissage profond coopératif Q-Learning (CDQL), démontrant
leur efficacité dans l’allocation adaptative des tâches. Les résultats indiquent que
l’intégration de stratégies d’apprentissage et de communication entre agents améliore
les performances du système et sa résilience face aux incertitudes.

Mots-clés: Systèmes Multi-Agents, Allocation de Tâches, Equilibrage de Charges,
Intelligence Artificielle Distribuée, Apprentissage par Renforcement, Méthodes Cen-
tralisées, Méthodes Decentralisées, Entraînement Centralisé et Execution Décentra-
lisée
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Chapter 1

Introduction

This chapter introduces the work presented in this thesis. Particularly, the introduc-
tion to the key concepts of the thesis, then the objectives and scope of the research
is described briefly. The chapter will conclude on an overview of the thesis outline.

1.1 Overview of Multi-Agent Systems

Multi-Agent Systems (MAS) is a powerful computational model that use distributed
agents to model or solve complex problems. MAS have been a very active research
topic over the years thanks to the very wide application panel it proposes. In a
MAS, agents are independent entities that can represent real-world entities, such
as biological cells, virus particles, ants, individual computers or even human beings
[1]. Each agent has a set of encoded rules or behaviors that dictate how they
interact with other agents making MAS particularly well-suited for decentralized
computing. In a decentralized system, there is no central controller, and global
properties emerge from the local interactions between agents. Interactions between
agents can be cooperative or competitive. That is, the agents can pursue the system’s
goal by communicating and sharing a similar goal, or the agents can pursue their own
interest. The difficulty being figuring out what course of actions should the agents
follow in order to maximize a given metric or reward. As these agents interact with
each other they are able to solve complex tasks such as load balancing which could
not be completed efficiently by a single agent alone [2].

3
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Figure 1.1: Recent work by OpenAI researchers [1] have displayed
the intricate interactions between agents playing hide (blue agents)

and seek (red agents)

1.2 Overview of the Load Balancing Problem

Load balancing is a crucial aspect of optimizing the performance of parallel and
distributed systems. The core idea is to distribute workload evenly across multiple
processors or computing nodes to prevent any single node from becoming overloaded
and bottle-necking the system. A sub-problem, within the broader framework of load
balancing, is task allocation. Effective task allocation is a prerequisite for achieving
well-balanced loads across a system, making the two concepts highly interdependent.
The following example is a well fitted analogy :

• Load Balancing: The head chef ensures all chefs in the kitchen have roughly
equal workloads.

• Task Allocation: Assigning specific dishes to chefs based on their expertise,
current workload, and station availability.

Mathematically speaking, load balancing is a global optimization problem where
the objective is to minimize variance in resource utilization across the system. Where
task allocation is local decision-making or assignment problem that contributes to
achieving the global load balancing goal. Load balancing and task allocation are
NP-hard problems when it comes to solving them in a multi-agent environment
with specific constraints [3].

Both of these problems are widely studied in their distributed version [4], mak-
ing them particularly interesting to study in MAS. However the aim to solve real
life problems such as rescue missions, or managing network flow through computing
nodes implies that the environment in which the agents take their decision is "com-
plex". That is, unknown, or partially unknown, to the agents, stochastic, constrained
(spatially, temporally and communication-wise). In addition to being complex, these
environments can also have a dynamic aspect (change of task frequency, change of
agent capacity to handle a task etc.). When implementing the agents and allowing
them to learn their role, all of these constraints and dynamic behaviors must be kept
in mind.
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In this sense, the design of the algorithms and processes that will allow load
balancing or task allocation must include spatial, temporal and communicational
constraints. Spatial constraints are linked to the location of either the agent or the
task; temporal constraints are concerned with the deadline to start or end any task;
communicational constraints are related to the communication network topography
(which agents are neighbors to one another).To accomplish any complex task, agents
need to communicate with one another, either finding consensus, sharing information
or even being competitive against each other.

1.3 Motivation

This thesis marks the culmination of my Master’s degree in Computer Science at the
University of Lille and embodies my dedication to understanding the complexities of
multi-agent systems. It is inspired by the rapid advancements in Multi-Agent Rein-
forcement Learning (MARL), which have shown potential for addressing real-world
challenges, such as decentralized decision-making in autonomous vehicles, intelli-
gent energy grids, collaborative robotics, and, as of recently, agent-based learning
for large language models and multi-modal models.

Driven by the increasing demand for intelligent systems that are both efficient
and adaptive, this research explores dynamic load balancing and task allocation in
complex multi-agent environments. The insights gained from this work align with my
aspiration to pursue a Ph.D. in reinforcement learning and multi-agent systems. My
long-term goal is to contribute to research that link theory and real-life applications.

1.4 Objectives and Scope

This thesis aims to present a state-of-the-art review of the approaches and
challenges involved in achieving efficient, robust, and dynamic load bal-
ancing and task allocation in complex multi-agent systems. By analyzing
existing methodologies, identifying limitations, and highlighting results, the thesis
seeks to provide a foundation for understanding how to effectively and dynamically
distribute workloads or allocate tasks in distributed, dynamic environments. This
work, however, will not delve into the intricacies of all the possible algorithms, but
we will go into the details of the ones that yield significant results.

1.5 Thesis Outline

During this work we will detail various approaches to solving load balancing and
task allocation problems in a dynamic fashion in a MAS.
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In section 2, we will first introduce all the necessary background knowledge and
foundational work for this thesis. That is, introduce the concepts of distributed
artificial intelligence and what intelligent agents are. Then we will formally define
what a Multi-Agent Systems is and introduce the theoretical foundations of Markov
decision process, further extended into reinforcement learning and multi-agent rein-
forcement learning. In addition to this, we will provide a formal definition of load
balancing and task allocation problems. Finally, we will go through all the chal-
lenges, and how they are expressed in the literature, hinting the possible solutions
to these challenges and how they are addressed. We will also briefly talk about how
algorithms are commonly evaluated to assess their performance in load balancing.

The following chapter 3 is the heart of our work. We aim to present the existing
methods under 3 panels:

• Centralized Methods – These rely on a single control unit, often referred to as
a central brain, which gathers global information and makes decisions for all
agents. This approach ensures optimal coordination but suffers from scalability
issues, communication overhead, and vulnerability to single points of failure.

• Decentralized Methods – These eliminate the need for a central control unit,
allowing agents to independently learn and adapt based on local information
and interactions. While more scalable and robust, decentralized approaches
introduce challenges in coordination, convergence, and efficiency due to the
lack of global monitoring.

• Centralized Training, Decentralized Execution Paradigm - This hybrid ap-
proach makes use of a centralized training phase, where agents learn optimal
policies using global knowledge, but during execution, they operate indepen-
dently based on local observations. This method balances the efficiency of
centralized learning with the scalability and resilience of decentralized execu-
tion.

The final section of our work will be aimed at debating each of the 3 panels
and related methods, by presenting the advantages and disadvantages of each, and
putting the studied methods in parallel. After this discussion section, we will con-
clude on our work.

In this work, each piece of information related to an article has been rigorously
cited. Articles are not necessarily treated in a chronological way but more in a
constructive and complementary way. For the sake of simplicity we have bounded
our research up to articles published in 2024.



Chapter 2

Background

This chapter provides the theoretical foundations necessary to understand the core
concepts that underpin our work. We begin by formally introducing Distributed
Artificial Intelligence (DAI), software agents, and multi-agent systems, as these form
the fundamental framework upon which our research is built. We then present
Reinforcement Learning (RL) and its extension to multi-agent settings (Multi-Agent
Reinforcement Learning (MARL)), which are essential paradigms for developing
adaptive solutions. Then, we formally define both the load balancing and task
allocation problems, as they represent the specific problems we aim to address.
Finally, we will review the challenges to which the scientific community is confronted
to when it comes to solving the problems of task allocation and load balancing.
Understanding these concepts is crucial, as they serve as building blocks for the
algorithms and methodologies presented in subsequent chapters.

2.1 Distributed Artificial Intelligence

Distributed Artificial Intelligence is a subfield of Artificial Intelligence (AI) that fo-
cuses on designing systems where multiple autonomous entities, known as agents,
interact and collaborate to solve complex problems. These systems are characterized
by decentralization, parallelism, and the ability to handle dynamic and heteroge-
neous environments [5].

DAI can be mathematically represented as: DAI = {A, E, O} where :

• A = {a1, a2, ..., an} is a set of autonomous agents.

7
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• E is the environment in which agents operate (including constraints).

• O is the set of objectives, either shared or individual.

Within DAI we find two research areas : Distributed Problem Solving (DPS)
and Multi-agent systems. DPS focuses on the problem and how to solve it with
multiple programmed entities collaborating together. In MAS, as stated before, the
components are intelligent agents which have some autonomous characteristics. On
one hand DPS handles agents that have a predefined range of actions and interac-
tions, on the other hand, MAS possesses the property of reasoning the coordination
problem among agents themselves with no predefined scenario [6].

Now that we have settled the foundations of DAI, we can delve into how software
agents are defined.

2.1.1 Software Agents

A software agent is a computational entity that performs tasks for its user within
a computing environment, operating autonomously to achieve specific objectives.
Agents are distinguished from simple programs by their autonomy, reactivity and
social ability [7]. They can also be classified based on their ability to reason, learn
and interact with other agents or systems [8]. There are 4 types of agents that are
widely used :

• Reactive Agents: respond to environmental stimuli without long-term plan-
ning.

• Deliberative Agents: use symbolic reasoning and planning to make decisions.

• Hybrid Agents: combine reactive and deliberative approaches.

• Learning Agents: employ techniques like reinforcement learning to improve
over time.

Generally, learning agents are dependent on each other. They interact with other
agents in order to meet their design objectives. Thus agent forms group to achieve
the system goals. This grouping constitutes the multi-agent system. Agents in
cooperative multi-agent system coordinate their actions with other agents to fulfill
its goals. For cooperative multi-agent systems, task allocation and, eventually, load
balancing is an important requirement, not only for the objective of the system but
for its efficiency.

A software agent can be defined as a tuple [7] A = (E, P, S, π) where :

• E represents the environment in which the agent operates.

• P is the perception function that maps environmental states to percepts.
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• S is the internal state of the agent (knowledge, goals, history).

• π is the policy, or decision-making function that determines the agent’s actions
based on it’s perception and state S : π(P, S) −→ Actions.

Now that we have formally defined what a software agent is, we can analyze the
multi-agent paradigm and how it is defined.

2.2 Multi-Agent System

As stated in the introduction, a MAS is a system in which multiple agents interact
with each other to achieve their goals. Drawing particularities from [9], [7], and [8],
a multi-agent system can be formally defined as a tuple : MAS = (A, E, I, O, R)
where :

• A = {a1, a2, ...an} is a finite set of agents.

• E represents the environment and the rules in which the agent operates (similar
to DAI).

• I represents the interactions between agents consisting of communication pro-
tocols, resource sharing protocols or coordination directives.

• O represents the organizational structure, including roles, responsibilities and
authority relationships.

• R represents the set of relationships and constraints, temporal and spatial
constraints, dependencies between tasks and agents, and resource allocation
constraints.

Additionally, the system can be [4] :

• Decentralized (resp. centralized) : no single agent has complete control over
the system (resp. one agent monitors the system and directs other agents).

• Distributed : meaning the agents are distributed across the environment.

• Scalable : the system can accommodate changes in size and complexity.

• Adaptive : the system can adjust to dynamic changes in the environment.

Although some centralized approaches [10, 11] yield significant results when it
comes to solving the problem of task allocation, they have flaws like being in a state
of single-point of failure when a single central brain handles the transactions from
the cohort of agents as well as poor scalability in general.

Famous scientific outbreaks in this field have shown that multi-agent systems
excelled at certain tasks using machine learning methods like reinforcement learning
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for single agent tasks (Alpha Go [12]) and multi-agent reinforcement learning for
larger environment tasks with complex agent interactions (Alpha Star [13]). We will
focus on defining these two key concepts: Reinforcement Learning and Multi-Agent
Reinforcement Learning that are essential to understand the underlying theory be-
hind some of the approaches to solving load balancing.

2.3 Markov Decision Process

Markov Decision Processes (MDPs) are defined as a discrete-time stochastic control
process characterized by a set of states S, a set of actions A, transition probabilities
P , and reward functions R [14]. At each time step, the decision-maker observes the
current state s ∈ S, selects an action a ∈ A, and then the system transitions to a
new state s′ according to the probability distribution P (s′|s, a), i.e. the probability
of transitioning to state s′ knowing the agent executed action a in state s. This
transition yields the corresponding reward R(s, a, s′), which is the reward obtained
from the transition from state s to state s′ executing action a. The objective is to
determine an optimal policy π that maximizes the expected cumulative reward over
time considering a specified criterion such as a discount factor γ. Methods such as
value iteration, policy iteration, and linear programming allow to find this optimal
policy [15].

2.3.1 Reinforcement Learning

Reinforcement Learning can be formally defined as a sequential decision-making
framework represented by a Markov Decision Process [16] [17], which is characterized
by a tuple MDP = (S, A, P, R, γ) where :

• S is the state space, representing all the possible states of the environment.

• A is the action space, containing all possible actions available to the agent.

• P : S ×A× S −→ [0, 1] is the state transition probability function. P (s′|s, a)
is the probability of transitioning to state s′ when taking action a in state s.

• R : S×A×S −→ R is the reward function. R(s′, a, s) represents the immediate
reward received when transitioning from state s to state s′ by taking action a.

• γ ∈ [0, 1] is the discount factor that determines the importance of future
rewards. A higher γ will make the agents favor long-term rewards, where a
lower γ will make the agent favor immediate rewards.

The objective in RL is to find an optimal action policy π∗ : S −→ A that
maximizes the expected cumulative discounted rewards:
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V π(s) = E[
∞∑

t=0
γtR(st, π(st), st+1)] (2.1)

This value function V π(s) represents the expected return when starting from
state s and following policy π thereafter. This policy can be found through various
methods like value-based methods such as Q-Learning [18, 19]. Q-Learning relies
on learning the quality of state-action (s, a) pairs, represented by a Q-Value which
estimates the expected cumulative reward achievable from a state s by taking action
a and following the optimal after. A tabular version estimates the Q-Value by storing
it and updating it in a Q-Table. Q-learning has yielded significant results in discrete
state spaces, but when confronted with continuous state spaces, the tabular nature
Q-learning makes learning intractable. To address this, Deep Q-Networks (DQN)
[20] use neural networks to approximate the Q-function, allowing agents to generalize
over complex state spaces. DQN incorporates techniques like experience replay
(storing and reusing past experiences) and target networks (stabilizing updates) to
improve learning stability. For each approach, the Q-values are updated using the
bellman equation as referral:

Q(s, a)←− Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)] (2.2)

Where :

• Q(s, a) : the Q-Value for state s and action a.

• α : the learning rate controlling the influence of new information.

• r : the immediate reward received after taking action a in state s.

• γ : the discount factor, balancing immediate and long term reward.

• maxa′Q(s′, a′)a : the maximum predicted Q-value for the next state s′.

• s′ : the next state resulting from the action a.

More complex approaches such as policy-based reinforcement learning methods
[21] directly optimize a parameterized policy π(a|s, θ) to maximize the expected
cumulative reward J(θ) = Eπθ

[∑∞
t=0 γtrt

]
. Unlike value-based methods, these ap-

proaches do not require a value function approximation and are well-suited for con-
tinuous or high-dimensional action spaces. The optimization often relies on gradient-
based techniques, with the policy gradient theorem providing the foundation [22].
Extensions like actor-critic methods [23] [12] combine policy optimization (actor)
with value estimation (critic) for improved stability. Proximal Policy Optimization
(PPO) introduces an objective to constrain updates and maintain stability, while
Deterministic Policy Gradient (DPG) methods are effective for continuous control.
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Policy-based methods are particularly relevant in Multi-Agent Reinforcement Learn-
ing, where agents must optimize their individual policies while considering interac-
tions and shared environments.

2.3.2 Multi-Agent Reinforcement Learning

Multi-Agent Reinforcement Learning extends the single-agent Reinforcement Learn-
ing framework to environments where multiple agents learn simultaneously. The
framework can be formalized as a Markov Game (also known as a stochastic game)
[16, 17] defined by the tuple (N, S, {Ai}i∈N , P, {Ri}i∈N , γ) where :

• Elements S, P , and γ are identical to the elements in the single-agent RL
framework presented earlier.

• N = {1, ..., n} is the finite set of agents. Ai is the action space of agent i.

• Ri : S ×A1 × ...×An × S −→ R is the reward function for agent i.

Each agent aims to find a policy πi : S −→ ∆(Ai) that maximizes its expected
discounted reward :

V π(s) = E[
∞∑

t=0
γtRi(st, a1t , ..., ant , st+1)] (2.3)

where π = (π1, ..., πn) is the joint policy of all agents.
In MARL, the interaction among agents often introduces unique challenges. The

environment becomes non-stationary, as the policies of other agents evolve over time.
Furthermore, depending on the problem, agents may need to cooperate, compete, or
navigate a combination of both, which requires careful design of reward structures.
For instance, cooperative environments often involve a global reward function, while
competitive scenarios may be modeled as zero-sum games. Hybrid settings blend
these extremes, complicating policy optimization.

A prominent framework for MARL is Centralized Training and Decentralized
Execution (CTDE), where agents leverage global information during training but
act independently at runtime. Algorithms like Multi-Agent Deep Deterministic Pol-
icy Gradient (MADDPG) [24] extend actor-critic methods to such setups. Despite
progress, MARL faces significant hurdles, including scalability issues due to the ex-
ponential growth of the joint action space, communication overhead in distributed
systems, and challenges in balancing exploration and exploitation. These factors
make MARL an active area of research with applications spanning robotics, au-
tonomous vehicles, and resource allocation.



2.4. Task Allocation and Load Balancing 13

2.4 Task Allocation and Load Balancing

The following section aims to present a general framework for both the task allo-
cation and load balancing problems. This framework is voluntarily generalized and
will be detailed in further chapters when we analyze a given approach to solve them.

2.4.1 Task Allocation in MAS

The Multi-Agent Task Allocation (MATA) problem can be formally defined as an
optimization problem within a MAS framework. We consider MAS to be a MAS as
defined in 2.2, then the task allocation problem is defined by the tuple (A, T, C, K, Q)
[25, 26] where :

• A = {a1, ..., an} is the finite set of agents.

• T = {t1, ..., tm} is the finite set of tasks to be allocated.

• C : A× T −→ R+ represents the cost function for agent-task pairs.

• K : T −→ N specifies the number of agents required for each task.

• Q : 2A × T −→ R defines the quality of task execution by a group of agents.

In certain cases [27] [28] the allocation must satisfy certain constraints. As men-
tioned in 1.2 constraints can be spatial, temporal, and communicational in certain
cases. For the sake of simplicity, we will present 3 constraints that are applicable to
a variety of systems and algorithms :

• Task Coverage : ∀t ∈ T : |a ∈ A|allocated(a, t)| = K(t) i.e. for each tasks, the
correct amount of agents are assigned to the task.

• Agent Capacity : ∀a ∈ A :
∑

t∈T allocated(a, t) ≤ cap(a) i.e. for each agent
assigned to a task, the sum of the allocated tasks is below the agents’ capacity.

• Temporal Constraints : ∀t, t′ ∈ T : precedes(t, t′) −→ completion_time(t) ≤
start_time(t′) i.e. if is there is a precedence relationship between task t and
t′, the completion time of task t must be before the start time of task t′.

Here, allocated(a, t) is a binary function indicating if agent a is allocated to task
t, cap(a) represents the capacity of agent a, precedes(t, t′) indicated task t precedes
task t′.

Finally, the global optimization objective of the system can be defined as :

minimize
∑
t∈T

∑
S⊆A

C(S, t)× x(S, t) (2.4)
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with x(S, t) a binary variable that indicates whether a subset of agents S ⊆ A

is assigned to task t. The equation 2.4 is subject to the following constraints: (1)
each task is assigned to only one subset S ⊆ A, for each agent of subset S and for
each task t ∈ T , (2) the number of tasks ti assigned to agent aj is lesser than agent
aj ’s capacity. Finally (3), x(S, t) ∈ 0, 1 is a binary function indicating that task t

is assigned to agent a, and C(S, t) represents the cost of agent subset S executing
task t.

Formally, these constraints can be formalized as such:

1.
∑

S⊆A x(S, t) = 1, ∀t ∈ T

2.
∑

t∈T

∑
S⊆Aaj ∈S

x(S, t) ≤ cap(aj), ∀aj ∈ A

3. x(S, t) ∈ {0, 1}, ∀S ⊆ A, ∀t ∈ T

In some dynamic environments [29], the problem extends to include time-varying
task arrival or task spawn rate (tasks appear faster or slower), agent availability
changes and dynamic cost functions based on the time of completion (depending on
how soon the task has been completed), as well as variations in agent capacity.

2.4.2 Load Balancing in MAS

As presented in section 1.2 the task allocation problem is a prerequisite for effective
load balancing in a MAS. Given an initial task allocation problem, and according
to [30, 31] the load balancing problem can extend the system state with (L, R, B)
where :

• L = l1(t), ..., lm(t) represent dynamic workloads derived from allocated tasks.

• R : A −→ R+ defines agent resource capacities.

• B : 2A −→ R+ measures system balance.

The system state at time t is characterized by: LD(t) = {w1(t), ..., wn(t)} where
wi(t) =

∑
t∈T li(t), Ti being tasks allocated to agent i. Depending on the problem

the optimization function can be simply minimizing the load variance across nodes
[32]. A more complex optimization function can also take into account a measure of
load imbalance and the system overhead due to redistribution [33]. Load imbalance
is defined as : γ(t) = (maxi∈Awi(t)−mini∈A

w̄(t)) with wi(t) being the workload of agent i

and w̄(t) the average workload in the system at time t [31]. As for system overhead
it includes communication and migration costs [30]. This problem is subject to the
same kind of constraints as the task allocation problem but has additional constraints
regarding the resource capacity and the total workload conservation. In fact, for any
agent i, his workload must be lesser or equal to his resource capacity R(ai) and the
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sum of the workload of all agents has to be equal to the total workload of the system
as per [31]. Although there are solutions that allow these problems to be solved in
polynomial or pseudo-polynomial time (centrally or distributedly, respectively) [10],
the constraints (temporal, spatial or communicational) represent the main difficulty
of these problems.

Now that we have defined the key concepts of our study, we will now present the
challenges to which the scientific community has been confronted while developing
the solutions we will present in a later chapter.

2.5 Major Challenges

As introduced in the section above, load balancing and task allocation are critical
components in distributed computing systems, aiming to optimize resource utiliza-
tion, minimize response times, and ensure system reliability. Many challenges are
faced in this context, particularly concerning temporal, spatial and communicational
constraints, robustness to uncertainty, and dynamic adaptation. This section aims
to present these challenges in order to pave the way to present the solutions that
have been provided in the next chapter.

2.5.1 Temporal Constraints

Temporal constraints involve the timing requirements associated with task execution
and resource availability as presented in 2.4.1. The difficulty being, scheduling
tasks within specific time windows, ensuring timely completion to meet deadlines
or respect preceding relationships. In MAS, dynamically allocating tasks under
time constraints necessitates algorithms that can adapt to varying workloads and
agent capabilities. Amador et al. [10] addresses the problem by proposing a task
allocation algorithm that allows tasks to be easily sequenced to yield high-quality
solutions. This algorithm first finds allocations that are fair (envyfree, i.e. for a given
allocated task, other agents won’t envy it), balancing the load and sharing important
tasks between agents, and efficient (Pareto optimal 1) in a simplified version of
the problem. Such constraints can be overcome in polynomial time using a Fisher
market 2 with agents as buyers and tasks as goods. It then heuristically schedules the
allocations, taking into account temporal constraints on shared tasks. Other authors
such as Choudhury et al. [34] address the problem of dynamically allocating tasks
to multiple agents under time window constraints and task completion uncertainty,
aiming to minimize unsuccessful tasks at the end of the operation horizon. Generally,

1denoting a distribution of wealth such that any redistribution or other change beneficial to one
individual is detrimental to one or more others.

2A Fisher market is an economic model for resource allocation where agents (buyers) with fixed
budgets bid on goods (tasks), and prices adjust dynamically until supply meets demand, resulting
in Pareto optimal and envy-free allocations
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these time constraints are respected thanks to an efficient communication among
agents, making communicational constraints another important challenge.

2.5.2 Communicational Constraints

Effective communication is vital for coordinating distributed tasks. In the reinforce-
ment learning paradigm, agents are supposed to have a purely local knowledge of
the environment and of the neighboring agents. This assumption is in agreement
with the MARL framework. In fact, MARL is most interesting where real life forces
agents to act without a-priori arranged communication channels and must rely on
action-feedback mechanisms. However, it is of interest to understand the effects of
communication on the system efficiency [35], where the agents are augmented with
some sort of communication capabilities. This is why Schaerf et al. [36] worked
on neighborhoods as a local concept between agents. The authors assume that each
agent can communicate only with some of the other agents, which they call its neigh-
bors. They consider a relation neighbor-of and assume it is reflexive, symmetric and
transitive. As a consequence, the relation neighbor-of partitions the population into
equivalence classes, that they call neighborhoods. Neighbors effectively communi-
cate performance indicators related to tasks and agents allowing a augmentation of
agent knowledge. We will later see that this sort of communication yields both good
and bad results.

There are other challenges such as managing communication overhead (amount
of time spent communicating instead of solving the problem), ensuring data con-
sistency, and handling latency issues. High communication costs can negate the
benefits of parallelism, making it essential to design load balancing algorithms that
minimize inter-process communication. Lifflander et al. [37] proposes a unified,
reduced-order model that combines computation, communication, and memory con-
siderations to describe "work" in a distributed system, allowing an optimizer to
explore complex compromises in task placement. However, these kind of commu-
nicational constraints are very related to the spatial constraints of the agents or
resources positions.

2.5.3 Spatial Constraints

Spatial constraints are very dependant on temporal constraints and communica-
tional constraints. For example, in geographically distributed systems, communica-
tion latencies are non-negligible and must be factored into load balancing strategies.
The perceived processing time of a request includes both the routing time to the
server and the actual processing time, which depends on the server’s load. Skowron
and Rzadca [38] address this by considering load balancing algorithms that account
for communication-balanced assignments, ensuring that the reduction in processing



2.5. Major Challenges 17

time from moving a task to a less loaded server outweighs the additional communi-
cation latency. Rutten and Mukherjee [39] analyze load balancing on spatial graphs,
developing a coupling-based approach to establish mean-field approximations for a
large class of graphs, including spatial ones. Interestingly, Schaerf et al. [36] consider
different network topologies defining the neighbors and find out that certain network
architectures used to communicate between agents undermine the performance of
the system when it has heterogeneous agent populations (communicating and non
communicating). The reason for this is that members of a communicating group
tend to be very conservative, in the sense that they mostly use the best resource.
And the bigger the group, the more conservative the members tend to be. However,
communication among agents is not completely useless, but it is something that
has to be manipulated carefully given an experimental setup and the content of the
communication has to properly represent the agent state.

2.5.4 Robustness to Uncertainty

Uncertainty in MAS comes from factors such as environmental change, incomplete
information, and unpredictable agent behaviors. Traditional Multi-Agent Reinforce-
ment Learning algorithms often assume accurate models of the environment and
other agents, which is not often the case in real-world scenarios. This can lead to
suboptimal performance when agents encounter unexpected situations. To address
this, robust MARL frameworks have been developed. For instance, Zhang et al.
[40] introduce a robust MARL approach that accounts for model uncertainties by
formulating the problem as a robust Markov game, enabling agents to learn poli-
cies that are resilient to such uncertainties. He et al. [41] introduce a Markov Game
model with state perturbation adversaries to account for state uncertainties, propos-
ing robust equilibrium concepts and algorithms like Robust Multi-Agent Q-learning
(RMAQ) and Robust Multi-Agent Actor-Critic (RMAAC) to enhance policy robust-
ness. Similarly, Shi et al. [42] focus on distributed robust Markov games, where each
agent aims to maximize its worst-case performance within a defined uncertainty set,
offering sample-efficient algorithms with finite-sample complexity guarantees 3. This
approach ensures robust policies even when the environment deviates from expected
conditions. This also requires an adaptive characteristic from the agents in order to
properly anticipate or react to a changing environment or other agents unexpected
behavior.

2.5.5 Dynamic Adaptation

Dynamic adaptation refers to an agent’s ability to adapt its behavior according to a
changing environment or agent interactions. Conventional MARL methods struggle

3In MARL it refers to algorithms designed to learn effective policies using a minimal number of
samples, while providing theoretical assurances on their performance based on the available data.
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with dynamic adaptation due to their dependence on static policies learned during
training, which do not generalize well to evolving environments. This limitation can
deteriorate the system’s responsiveness, flexibility and overall integrity. To overcome
this, adaptive strategies have been proposed. For example Schaerf et al. [36] intro-
duce a framework for adaptive load balancing called a Multi-Agent Multi-Resource
Stochastic System (MAMRSS) in which each of the resources has a certain capac-
ity, which is a real number; this capacity changes over time, as determined by a
probabilistic function C. At each time point each agent is either idle or engaged. If
it is idle, it may submit a new job with a probability given by P . Each job has a
certain size which is also a real number. The size of any submitted job is determined
by the probabilistic function D. For each new job the agent selects one of the re-
sources according to a selection rule which are adaptive to the characteristics of the
agents and the environment. That way agent, who rely on purely local information,
are able to adapt to environment change via C and D, but can also adapt to new
agent behavior via P . More recently, Fernander et al. [43] proposed an adaptive
asynchronous work-stealing method that collects real-time information about sys-
tem nodes to improve task distribution by dynamically selecting appropriate nodes
for task execution. This method has proven itself 10.1% more efficient that stan-
dard state-of-the-art methods in the literature. Most of these approaches are in a
decentralized setting where each agent has it’s own course of action and decision
making ability. Alternatively, a centralized method introduced by Zhang et al. [11]
called Stochastic Clustering Auction (SCA) adapts to changes in task requirements
or agent capabilities during runtime, ensuring robust performance under dynamic
conditions. Additionally, the algorithm handles differences in agent capabilities by
incorporating individual cost functions, allowing an efficient task distribution across
diverse agents, this ensures the system and central auctioneer a broader range of
action tackling the constraint of highly dynamic environments. Another approach
proposed in a recent PhD Thesis by E. Beauprez [44] presents a system designed to
perform ongoing concurrent negotiations while tasks are being executed. This means
that as new tasks arrive or as conditions change (e.g. environment capacity change
or resource fluctuation), agents can dynamically adjust the workload distribution.
This hybrid approach mixes local-decision making with global benefits and quickly
adapts to a dynamic environment because decisions don’t need the approval of a
central controller. The author has shown that this system ensures an even task dis-
tribution across the system and prevents any agent of becoming a bottleneck. The
decentralized aspect inherently supports scalability allowing the system to perform,
even as the number of tasks and agents grow.
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2.6 Performance Evaluation

Evaluating algorithms designed for load balancing or task allocation in multi-agent
systems involves multiple key performance metric to ensure efficiency and effective-
ness. Common metrics include response time, throughput, resource utilization and
makespan are critical factors in assessing the performance of such algorithms. Gen-
erally, agent performance metrics ensure that the load balancing or task allocation
adheres to the constraints of the system. In terms of computing performance, the
time complexity of each algorithm is commonly cited as an indicator of performance
and scalability. Other systems will prefer evaluating the algorithm over metrics such
as system stability, agent workload distribution and total computational overhead to
compare different approaches or setups. Overall, studies highlight the importance of
balancing global optimality with real-time computational feasibility, a critical factor
in multi-agent load balancing strategies. Metrics are to be considered useful for a
given application of load balancing and they all find theoretical justification behind
the experimental setup [45].

Now that we have presented the foundations of distributed artificial intelligence,
software agents, multi-agent systems, single and multi-agent reinforcement learning,
and problems such as task allocation and load balancing, we can delve into the
methods that have been developed that yield significant results into solving these
problems.





Chapter 3

Methods For Load-Balancing
and Task Allocation in dynamic
MAS

.

3.1 Centralized Methods

Centralized methods rely on a single controller to make task allocation and load
distribution decisions across the entire system. These approaches are advantageous
for their ability to leverage global information for optimal resource utilization but
face scalability and robustness challenges as stated in the previous chapter. From
an engineering point of view, these approaches also have a single point of failure
in the system which makes them highly risky. We will see that such methods can
take roots in optimization strategies ranging from market clearing to Markov chain
Monte Carlo approach.

3.1.1 Fisher Market-Based Approaches

The Fisher market model offers an economic framework to address task allocation
challenges in multi-agent systems. In this approach, tasks are treated as "goods,"
agents act as "buyers" with fixed budgets, and a centralized controller adjusts task

21
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prices dynamically to achieve equilibrium between supply and demand. This ensures
two desirable properties: envy-free allocations, where no agent prefers tasks assigned
to others, and Pareto optimality, where no reallocation can improve one agent’s
outcome without worsening another’s.

Amador et al. [10] extended this model to solve the dynamic multi-agent task
allocation problem under spatial and temporal constraints with the Fisher Market-
Clearing Task Allocation (FMC_TA) algorithm. Their work addresses situations
where agents and tasks are distributed geographically, and tasks must be executed
within strict deadlines while respecting precedence relationships. By formulating
the problem as a Fisher market, the centralized controller dynamically adjusts allo-
cations as the environment evolves, balancing fairness and efficiency.

This approach ensures a fair task distribution. That is, tasks are allocated evenly,
respecting agent capacities and workloads constraints. It also ensures efficiency. In
fact, allocations are Pareto optimal, minimizing system-wide costs while meeting
constraints. Finally, the approach dynamically adapts to changes in task demands
and agent availability in real-time. This algorithm consists of two main stages: Task
Allocation and Scheduling. I will propose a detailed account of these two steps.

1. Task Allocation Phase

This phase uses a Fisher market mechanism to allocate tasks to agents fairly (envy-
free) and efficiently (Pareto-optimal) in a simplified model of the problem.

Initialization

• Let A = {a1, a2, . . . , an} be the set of agents.

• Let T = {t1, t2, . . . , tm} be the set of tasks (further in the algorithm, the author
refer to the tasks as vi).

• Each agent ai is endowed with an equal budget of money.

Preference Matrix

The algorithm first constructs a preference matrix R, where rij represents the utility
for agent ai to execute task tj :

rij = δ(tj , τi + ρ(ai, tj)) ·max
q

Cap(tj , q)− π(CTi, ∆w),

where:

• δ(tj , ·) represents the soft deadline function (utility decay over time). For tasks
where there are no deadlines, δ(tj , ·) = 1.

• τi is the agent ai’s current time.
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• ρ(ai, tj) is the travel time from ai’s location to tj .

• Cap(tj , q) represents the utility function for q agents sharing tj . All agents
sharing a task must be present before task execution can begin, and the amount
of time an agent must spend on the task is equal to its allocated fraction of the
workload; these portions may be of different sizes. Cap(tj , q), can represent
the minimum required or maximum allowed numbers of agents (by setting
capability to 0 for fewer or more agents, respectively), as well as changes in
execution quality due to synergies or coordination costs.

• π(CTi, ∆w) is the penalty for interrupting ai’s current task CTi having done
∆w amount of work on that task, and moving to new task tj .

Market Clearing Prices and Allocation

Using the polynomial-time algorithm by Devanur et al. [46], the authors compute
the market-clearing prices p and allocation matrix X, where:

xij = Fraction of task tj allocated to agent ai.

The allocation represented by X satisfies envy-freeness and Pareto optimality in the
system. Once that the allocation is defined, a scheduling phase begins.

2. Scheduling Phase

This phase refines the allocation by ordering and scheduling tasks for each agent,
considering spatial and temporal constraints. It can be considered as a sort of
centralized consensus phase where the agents receive new orders for an allocation
that is in agreement with the system’s constraints.

Task Sequencing

Mainly, for each agent ai, a new sequencing is defined in order to prioritize tasks
allocated in X by maximizing Cap(tj , q) to prioritize tasks with high cooperative
utility. Additionally, ties are broken in favor of older tasks, imposing a unique
ordering across agents that prevents deadlock and avoids task starvation. That is,
a situation where multiple agents are stuck because each is waiting for a task held
by another agent, creating a circular wait.

Initial Scheduling

The algorithm begins by computing the initial schedule σi for agent ai, ensuring:

t′
k − tk = xik · w(tk), tk+1 − t′

k ≥ ρ(tk, tk+1),



24 Chapter 3. Methods For Load-Balancing and Task Allocation in dynamic MAS

where tk and t′
k are start and end times for task vk (namely task tj allocated to agent

ai in Xij). In other words, the spatial-temporal constraints require that the time
spent on each task must equal ai’s assigned share of the workload w(tk) and that
agents must have sufficient time to move between tasks because they can only per-
form tasks at their current location (illustrated by the distance between the current
task tk and the next task tk+1 : ρ(tk, tk+1)). Once the spatial-temporal constraints
are respected, the authors define an adjusting phase for inter-agent constraints to
respect the necessary conditions for agents to cooperate on a task as well as the
implications for the subsequent tasks in the schedule.

Adjusting Inter-Agent Constraints

These constraints state that agents cannot cooperate on a shared task if all the
assigned agents have not arrived to the task. The first step of the adjustment
consists of ensuring all agents arrive before execution begins :

τj = max{tk|k is allocated to tj}.

Such actions can have impact on the subsequent tasks of the schedule. Conse-
quently, the authors allow the delay of subsequent tasks if necessary:

tk = max{tk−1 + ρ(tk−1, tk), τk}.

This constraint can be solved by monotonically iterating through the sorted times
in the initial schedules in O(mlog(m)) time, with m being the number of tasks.

Task Reordering

Following the adjustments respecting inter-agents constraints, a task reordering
phase is instantiated. This reordering happens because, as stated above, in the
schedule of an agent, shared tasks can delay non-shared tasks. Subsequently, the
algorithm tries to move the delayed non-shared tasks earlier in the schedule in order
to minimize the overall impact of these delays. However, multiple conditions must
be met :

• For k > 1 (i.e., the shared task is not the first in the schedule):

τ si
k − ρ(vsi

k−1, vsi
k ) + xsi

k+1w(vsi
k+1) + ρ(vsi

k+1, vsi
k ) ≤ τ si

k .

The components of this equation are:

– τ si
k : the start time of the shared task vsi

k .

– ρ(vsi
k−1, vsi

k ): the travel time between tasks vsi
k−1 and vsi

k .
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– xsi
k+1: the fraction of the non-shared task vsi

k+1 allocated to agent si.

– w(vsi
k+1): the duration of the non-shared task vsi

k+1.

– ρ(vsi
k+1, vsi

k ): the travel time between the non-shared task vsi
k+1 and the

shared task vsi
k .

In other words, a non-shared task can be moved earlier if it won’t cause any
further delays to the shared task that follows. The algorithm evaluates whether
shifting the non-shared task earlier would still allow the shared task to start
on time, considering factors like travel time and task duration.

• For k = 1 (i.e., the shared task is the first in the schedule):

t + xsi
k+1w(vsi

k+1) + 2ρ(ai, vsi
k+1) ≤ τ si

1 .

In this equation:

– t represents the current time.

– ρ(ai, vsi
k+1) represents the travel time from the agent ai’s current location

to the non-shared task vsi
k+1.

– τ si
1 represents the start time of the first shared task vsi

1 .

Here the algorithm checks whether the non-shared task can be completed be-
fore the shared task is supposed to start.

Following this process, non-shared tasks delayed by shared tasks are reordered
to reduce delays without violating constraints. If the schedules are changed, the
start times are, again, updated following the exact same logic. Knowing that each
task is considered once, this step requires O(m) time. FMC_TA thus runs in worst-
case polynomial time to compute allocations and schedule tasks centrally which is
a significant result for large scale simulations.

This algorithm shows that FMC_TA effectively and efficiently allocates and
schedules tasks for agents in the complex, dynamic settings characteristic of con-
strained multi-agent system.

3.1.2 Centralized Auction-Based Approaches

Fisher market-based methods and Stochastic Clustering Auction, presented by Zhan
et al. [11], share a conceptual foundation in their goal to optimize resource alloca-
tion. While Fisher markets leverage equilibrium pricing to allocate divisible goods
efficiently, SCA extends this idea to the allocation of discrete tasks by treating task
clusters as resources and employing a stochastic optimization approach to solve the
allocation. This transition from market-driven dynamics to stochastic clustering
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enables SCA to handle complex, heterogeneous environments with dynamic con-
straints.

Similarly as for the FMC_TA algorithm, the Stochastic Clustering Auction ad-
dresses the NP-hard task allocation problem. However, it is now applied to hetero-
geneous multi-agent teams by viewing task allocation as an optimization problem
over task clusters. The goal is to allocate tasks among agents such that a global or
regional cost function is minimized. The elements defining the system include:

• H = {h1, h2, ..., hk}: a set of k heterogeneous agents.

• T = {t1, t2, ..., tn}: a set of n tasks.

• A = {a1, a2, ..., ak}: the allocation where
⋃k

i=1 ai = T, ai ∈ T and the cluster
of tasks ai is assigned to agent hi.

In the paper, the authors present a cost associated to the allocation A. This cost
is given by either

C(A) =
k∑

i=1
c(ai) (3.1)

or

C(A) = maxic(ai) (3.2)

where c(ai) is the minimum cost of agent i completing the set of tasks ai. The
problem is to solve the optimization problem minAC(A). In a way, the cost function
in Equation 3.1 can be used to represent the total distance traveled or the total
energy used by the agents to achieve this allocation. While the cost function in
Equation 3.2 can be used to represent the maximum time taken to accomplish the
tasks.

Stochastic Clustering Auction

The authors define the SCA algorithm as a minimization of the cost C(A) using a
Markov chain Monte Carlo approach combined with hill-climbing to probabilistically
explore the space of possible allocations. Mainly, the idea is to start with an initial
allocation A for k clusters and to probabilistically reduce C(A) by rearranging the
tasks T among the clusters. The key steps are described in the following paragraphs.

Initial Partition and Cost Approximation

Initially, the set of tasks T is partitioned into k clusters to form an initial allocation
A = {a1, a2, ..., ak}. Each cluster ai being an unordered subset of T .

Having the an initial partition, it is possible for the agents to approximate the
cost function ci(ai) (i.e. cost function for agent hi with tasks ai assigned) using either
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equations 3.1 or 3.2. This cost is submitted to the auctioneer and is considered a
bid for the allocation. The auctioneer computes the global cost C(A) again using
either equations 3.1 or 3.2 and sets a high temperature T (to which I will refer later
on).

Task Reallocation

Having received all the bids, the auctioneer can now reallocate tasks to minimize
the global cost C(A) with what the authors introduce as a single move or a dual
move.

Single Move: The auctioneer randomly selects a task ti ∈ al from agent hl and
reassigns this task to agent hj . This move results in the initial allocation having 2
modified clusters. Then the agents can compute the costs of their new allocation
(based on equations 3.1 or 3.2). The likelihood that such a transfer of task ti from
agent hl to agent hj is given by

PS(i, j, k, T ) =
exp

(
−

C(A(j,l)
i
′ )

T

)
∑k

j=1 exp
(
−C(A(j,l)

j )
T

) (3.3)

with C(A(j,l)
j ) being the new global cost the auctioneer computed from the costs

the agents computed based on their new allocations. T is the temperature, and the
denominator normalizes the probabilities over all potential allocations.

Dual Move (Task Swap): The auctioneer randomly selects two tasks in al and
am, task ti from agent hl and task tj from agent hm. They are swapped between
the agents, resulting in a new allocation A that has two modified clusters. Similarly,
agents can compute their costs (based on equations 3.1 or 3.2) and the auctioneer
can compute the new global cost. The likelihood of a dual move is given by

PD(i, j, l, m, T ) =
exp(−C(2)

T )∑2
p=1 exp(−C(p)

T )
, (3.4)

where C(1) = C(A), the cost before swapping the tasks and C(2) = C(A(l,m
i,j ), the

cost after swapping tasks ti and tj in the allocations of agents hl and hm respectively.

Acceptance or Rejection

If either equations 3.3 or 3.4 falls into acceptance likelihood, the change is accepted,
the allocation A is updated and the global cost C(A) is logged. However, if either
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equations 3.3 or 3.4 falls into rejection likelihood, the auctioneer does not update A

and returns to the previous step of reallocating tasks.
The auction ends when the termination criteria is satisfied. That is, if T < Tcut,

where Tcut is a threshold temperature, then the auction is terminated and the final
allocation is A∗ = A

(j,l)
i or A∗ = A

(l,m)
i,j with a final global cost of C(A)∗. Again,

if the criteria is not satisfied, the authors reduce T = T
β where β > 1 and start the

reallocation step.
The authors show that SCA provides a flexible, easily implementable and effi-

cient method for task allocation in multi-agent systems, accommodating centralized
architectures. The use of stochastic optimization ensures near-optimal solutions
within practical computational limits. By adjusting the temperature parameter T ,
the algorithm balances solution quality and runtime, making it adaptable to varying
mission requirements.

3.1.3 Conclusion on Centralized Methods

In this section, we have delved into the details of two centralized methods to solve
a task allocation problem. These methods rely on a single controller and assume
that one of the agents or the central brain of the system has full knowledge of the
environment by initially knowing it as displayed in sections 3.1.1 and 3.1.2. Each of
these methods propose a way of reaching near-optimal solutions for a task allocation
problem, either using a fisher market clearing approach or a stochastic exploration
approach, and propose original ways of tackling common challenges in multi-agent
systems as stated in 2.5. However, the centralized aspect of these methods makes
it debatable that centralized multi-agent systems and algorithms properly illustrate
real life interactions between entities of heterogeneous nature, as well as the hierar-
chical relationship of certain agents. One could wonder how such interactions can
be modeled and taken into account in problems like dynamic task allocation or load
balancing. In order to answer that question and push even further the idea of scal-
ability, fault tolerance and reduced communication overhead, researchers have have
explored decentralized methods opening a wide panel of applications and algorithms.

3.2 Decentralized Methods

As stated in chapter 2 dynamic load balancing in Multi-Agent Systems is a crucial
challenge in distributed computing, multi-robot coordination, and networked sys-
tems. Unlike centralized approaches, which rely on a single authority to allocate
tasks or balance workloads, decentralized methods leverage agent autonomy, local
decision-making, and inter-agent communication to achieve efficient load balancing.

An important distinction must be made in the following section : cooperative
and non cooperative setups. In cooperative game theory, players (agents) can form



3.2. Decentralized Methods 29

binding agreements and collaborate to achieve a common goal. The focus is on coali-
tions, fair profit distribution, and joint optimization. Solutions includeNash Bar-
gaining Solution (NBS) and Shapley value, ensuring fairness and Pareto-optimality
[47, 48]. Alternatively, in non-cooperative games, players make independent and
self-interested decisions without binding agreements using Markov Games [49]. Each
player maximizes its own utility, leading to strategic competition. The key solution
concept is Nash Equilibrium, where no player benefits from unilaterally changing
its strategy [50]. Algorithms such as Decentralized Stochastic Algorithm (DSA)
leveraging heuristics [49] are used in order to converge to this equilibrium.

Exiting game theory background, cooperative and non cooperative setups can
be illustrated as follows:

• Cooperative MAS prioritize shared objectives through structured coordination
allowing the system to perform well in dynamic environments. However, each
agent doesn’t necessarily evolve independently and each information needs to
be relayed to every agent, creating challenges in communication overhead and
straying from real life scenarios where communications are limited and the
system is partially known.

• Noncooperative MAS will model agents that are self-interested optimizing in-
dividual rewards and having to approximate their environments by communi-
cating with other agents. This approach reduces communication overhead and
lowers the computational complexity of having to aggregate all the coopera-
tive agents information. However, it can limit the system in terms of dynamics
because of the competitive agent incentives.

Additionally, some authors consider the agents to be of different nature (if de-
fined by their goal or capabilities) and able to adapt to dynamic behavior which
opens the question of inter-agent interaction to solve load balancing [36] and if com-
munication among them really is beneficial. Other studies consider the system as
a global auction where each agent is its own auctioneer. In this setup, commu-
nication between agents is extremely important and a consensus process allows a
near-optimal dynamic allocation of tasks in the system with varying properties [29].

In this section I will address methods using the non-cooperative framework,
where agents are of heterogeneous nature with purely local information. I will try to
delve into the complexities of methods taking roots in game theory and distributed
optimization. I will show that each of these methods contribute to more effective
and scalable load balancing in MAS. The strong game theoretic background will
only be detailed it when it is directly linked to MAS formulation.
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3.2.1 Game Theory-Based Method

Game Theory provides a mathematical framework to model interactions of various
nature among autonomous agents in MAS. It is leveraged to analyze how locally
self-interested agents can cooperate or compete to achieve a global performance.
Specifically, in MAS, game theory is widely used for resource allocation, coordination
and decision-making under various constraints.

This section aims to present methods leveraging game-theory in a decentralized
fashion to solve the task allocation problem. In a decentralized system, game theory
allows agents to negotiate, make independent decisions, and align their strategies
to benefit the system globally without a central controller aggregating the local
information of each agent.

Chapman et al. [49] propose a novel decentralized technique for planning agent
schedules in a dynamic task allocation problem. The contributions of this article
are the following:

• Markov Game Formulation: the task allocation problem is formulated as a
markov game, where agents act in a stochastic, multi-state environment in
order to optimize a global utility function. The dynamic aspect of the envi-
ronment comes from the fact that tasks have varying deadlines and processing
requirements.

• Approximation with Static Potential Games: the authors specify that since
solving markov games is computationally challenging, they approximate them
using a sequence of static potential games (defined later in this section), al-
lowing an efficient solution.

• Decentralized Solution via the Decentralized Stochastic Algorithm: the paper
presents a distribution method for solving approximate games. This method
essentially allows agents to coordinate dynamically with limited communica-
tion.

Markov Game Formulation

Markov Games are an extension of noncooperative games for repeated interactions
in which the game played by the agents at each time-step t, varies probabilistically
as a function of the state and the choice of strategies in the previous round [49].
Formally a markov game is a tuple Γ =< N, Ω, {{Si, ui}i∈N}ω∈Ω, q >. The model
defined by the authors comprises:

• A set of states ω ∈ Ω, each of which defines a set of tasks X = {x1, ..., xj , ...},
each task has a deadline td

xj
, a number of processing units, yxj , (number of

agents to process the task), and a task utility function, uxj (s) : S −→ R (local
utility function).
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• A set of agents N = {1, 2, ..., i, ..., n}, each with a strategy space Si, composed
of a sequence of tasks to attend to. Additionally, an agent has a utility function
ui(si, s−i) : S −→ R.

• A state transition function q(ωt+1|ωt), and

• A global utility function ug(s) : S −→ R.

The transition function q describes how new tasks are generated and introduced
into the system. When agents attend to such new tasks, their utility function comes
into play. It represents the payoff for completing a task. However, certain conditions
must be met, i.e. the completion time of the task tc

xj
(s) by agents xj following a

given strategy s, has to be inferior to the hard deadline for the task, and if the correct
number of agents attend to this task completing it before the hard deadline. If these
conditions are met, the payoff is a discount factor β 1 that incorporates any benefit
of completing the task earlier. Otherwise, the utility is 0. The authors specify that
tasks incomplete at deadline are equivalent to unattended tasks. Also, having more
agents than necessary to complete the task increases the payoff proportionally to the
additional number of agents. Finally, the global utility function ranks the overall
allocation of tasks to agents and is an aggregation of task utilities :

ug(s) =
∑

xj∈X

uxj (s) (3.5)

The authors emphasize that in their model, an agent’s strategy space is the
set of all permutations of assignments to tasks at each period. That is, a strategy
selects an action for each time step for every subsequent state of the environment.
That means, an agent’s strategy is a set of vectors of actions, with one vector for
each state of the environment. Given the real-life problems to which the authors
want to apply their method, evaluating and negotiating a set of joint strategies for
the number of agents and the size of action vectors of extremely large size, would
take too long. Moreover, the system in which agents will be deployed will require
them to make decisions over a very short time-frame. This issue illustrates the main
difficulty with multi-agent systems and distributed algorithms : computational and
timely cost.

To make real-time decision-making computationally feasible, the authors approx-
imate the full Markov game using a sequence of static potential games 2. Instead

1The value of β represents a trade–off between the number of tasks completed and the timeliness
of those completed tasks. As the authors aim to maximize the number of tasks completed, they
chose a value close to 1, however, if timeliness was their main concern, they would have chosen a
lower value.

2A potential game is a game where any change in an agent’s utility is reflected by a corresponding
change in a global potential function. This ensures the game has at least one pure strategy Nash
equilibrium and allows for efficient decentralized optimization.
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of considering all future states, agents optimize their strategies over a finite horizon
of w time steps. This reduces the complexity of computing optimal strategies while
still capturing the most relevant decision-making factors.

Each agent’s strategy space consists of possible assignments over this limited
horizon, making it in agreement with real-world applications where fast decisions are
required. The decentralized aspect of the approach is brought by the implementation
of the Decentralized Stochastic Algorithm to allow agents to negotiate and optimize
their actions dynamically. The authors show that this approach ensures that the
system is robust to communication constraints and can adapt to partial observability.

Distributed Stochastic Algorithm

The Decentralized Stochastic Algorithm [51] is used in the paper as a decentralized,
local search method for optimizing task allocation in a multi-agent system. Since
the task allocation problem is approximated as a sequence of potential games, DSA
ensures that agents can make independent yet coordinated decisions, leading to
globally efficient outcomes. The DSA operates iteratively, allowing agents to adapt
their task assignments dynamically by making local improvements. The authors
take into account limited range view in order for the agents to base themselves only
on local observation. The agents can only observe tasks within a radius r. The agent
can only communicate with other agents within r, and an agents’ utility is computed
only over visible tasks. The authors slightly modify the DSA so that each agent
makes independent decisions while following the potential game structure ensuring
convergence of the algorithm. Also, the information spreads indirectly through agent
interactions allowing the system to function even with limited connectivity.

The algorithm the authors propose is detailed in Algorithm 1, I have taken the
liberty to simplify some steps for the sake of the reader. The overall structure
remains in agreement with the original paper [49].

In this algorithm, the probability p is tuned to balance exploration and stability.
After the for-loop, a process of recycling is done by using the previous assignment as
a starting point for the next, allowing to reduce computation time and quickly adjust
to new tasks (with potentially pressing deadlines). It then removes any completed
or expired tasks to avoid unnecessary reallocation.

This method proves itself very efficient because of it being decentralized allow-
ing agents to make independent decisions, the probabilistic agent activation with p

prevents oscillations and instability to newly arriving tasks, additionally, the poten-
tial game approximation setup guarantees a convergence to a Nash equilibrium with
DSA. In terms of application, authors find that this method is as efficient as cen-
tralized methods in unlimited range of view, but when the communication and view
are limited to a certain radius, the proposed method outperforms the centralized
ones. This performance illustrates the benefits of decentralized methods allowing
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Algorithm 1 Distributed Stochastic Algorithm (DSA) for Task Allocation
1: Input: Set of agents N , set of tasks X, time horizon w, activation probability

p
2: Initialize: Each agent i ∈ N selects an initial strategy si (sequence of tasks

over w steps allocated to agent i)
3: while Tasks remain uncompleted do
4: for each agent i ∈ N in parallel do
5: With probability p, agent i is activated
6: if agent i is activated then
7: Compute current utility ui(si, s−i)
8: Determine best-response strategy snew

i that maximizes ui

9: if ui(snew
i , s−i) > ui(si, s−i) then

10: Update strategy: si ← snew
i

11: end if
12: end if
13: end for
14: Advance time step: t← t + 1
15: Shift decision window: retain last w − 1 steps, recompute next step
16: Remove completed or expired tasks from X
17: end while
18: Output: Optimized task allocation strategy for all agents with Nash equilib-

rium.

agents to efficiently take decisions and approximate their global environment while
remaining computationally viable with a short time frame for decision-making.

3.2.2 Distributed Optimization-Based Methods

Dynamic load balancing in Multi-Agent Systems is crucial for optimizing resource
utilization and ensuring efficient task distribution among agents. Distributed opti-
mization methods (DOM) have been extensively studied to address this challenge,
enabling agents to make decentralized decisions while achieving global objectives.
Even though DOM and the previously introduced game-theoretic methods 3.2.1 both
aim to achieve effective dynamic load balancing they differ fundamentally in their
underlying principles.

As previously stated, game-theoretic methods model the interactions among
agents as strategic games, where agents act based on their own interests, which
may or may not align with a global objective. Alternatively, DOM focus on col-
laboratively minimizing a global cost function such as the time taken per jobs, or
maximizing a global utility function such as the throughput of completed jobs [36].
The primary goal is to find an optimal solution that benefits the entire system. For
instance, consensus-based algorithms [29] enable agents to agree on certain variables’
values to achieve system-wide optimization. These methods are typically designed
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for cooperative scenarios where agents are willing to share information and work
towards a collective goal.

In this section I will present methods that propose a robust dynamic load bal-
ancing. Some proofs linked to articles will only be cited but not detailed as it does
not bring any true value to my work.

Consensus-Based Decentralized Auctions

Choi et al. [29] present a novel approach to decentralized task allocation for au-
tonomous vehicles. The paper introduces not one but two algorithms : Consensus-
Based Auction Algorithm (CBAA) for single-task assignments and its extension,
Consensus-Based Bundle Algorithm (CBBA), for multi-task assignments. These
two algorithms merge auction-based market mechanisms for task selection with a
decentralized consensus process for conflict resolution resulting in a conflict free al-
location. In addition to presenting the two algorithms, the authors also propose
a formal proof of convergence and worst-case performance guarantees, as well as a
comparison with existing sequential auction algorithms, showing that their method
outperforms them in terms of convergence speed and assignment efficiency.

CBAA - Definition

The first algorithm, CBAA, solves the single-assignment problem. That is, where a
fleet of Nu agents must assign Nt tasks such that :

• Each task is assigned to at most one agent (conflict free assignment)

• Each agent is assigned to at most one task

The problem is formulated as the following integer optimization problem:

max
Nu∑
i=1

Nt∑
j=1

cijxij (3.6)

where:

• xij is a binary variable (allocation vector) indicating if task j is assigned to
agent i

• cij is the reward agent i receives from completing task j

As per the algorithm’s definition, the constraint of single task assignment per
agent must be respected

∑Nt
j=1 xij ≤ 1, ∀i ∈ I, each element in the allocation matrix

has to be less or equal to one i.e. each agent can select at most one task. A similar
constraint on the tasks is formulated with

∑Nu
i=1 xij ≤ 1,∀j ∈ J . Additionally, the

number of tasks allocated is bounded by the system’s constraints
∑Nu

i=1
∑Nt

j=1 xij =
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Nmin, Nmin = min(Nt, Nu), which makes sense. In fact, you cannot allocate more
tasks (resp. agents) than there are available tasks (resp. agents).

CBAA - Algorithm

The algorithm operates through two iterative phases until all tasks have been as-
signed respecting the constraints, resulting in a conflict free assignment. The first
phase is called Auction Process, where each agent independently bids for the task
that maximizes its local reward. The winning bid is stored and updated iteratively.
Each agents maintain two vectors: xi ∈ {0, 1}Nt agent i’s task list, and yi ∈ RNt

the winning bid list (which is always kept up-to-date). The first phase is described
in Algorithm 2

Algorithm 2 CBAA - Phase 1: Auction Process (Task Selection)
Require: cij : Task bid for agent i, yi: Winning bid list, xi: Task assignment list

1: Initialize xi ← 0, yi ← 0
2: if

∑
j xij = 0 then ▷ Check if agent is unassigned

3: for j ∈ J do
4: hij ← 1(cij > yij) ▷ Identify valid tasks
5: end for
6: if

∑
j hij > 0 then ▷ If there are valid tasks

7: Ji ← arg maxj(cij · hij) ▷ Select best task
8: xiJi ← 1 ▷ Indicate task Ji assigned to agent i
9: yiJi ← ciJi ▷ Update bid

10: end if
11: end if

Algorithm 2 shows the procedure of agent i’s phase 1 at iteration t, where one
iteration consists of a single run of phase 1 and phase 2. Authors specify that each
agent’s iteration count can be different, which allows for the possibility that each
agent has different iteration periods. An unassigned agent i (equivalently, an agent
with

∑
j xij(t) = 0) first computes the valid task list hi, where hij ∈ {0, 1}Nt . The

intuition is, if there are bids on a task j that are higher than the winning bid list for
task j, then it is a valid task for agent i, because he could claim it. If there are valid
tasks, it then selects a task Ji giving it the maximum score based on the current
list of winning bids (line 7 of Algorithm 2), and updates its task xi and the winning
bids list yi accordingly. That is, set xij = 1 (resp. yij = ciJi) when task J is being
assigned to agent i. Also, in the case that the agent has already been assigned a
task

∑
j xij(t) ̸= 0, this selection process is skipped, and the agent moves to phase

2.
The second phase of the CBAA algorithm is the consensus process, where each

agent exchanges its winning bid list with its direct neighbors and updates its bid
values to reach an agreement on the highest bid. The neighbors are defined by a
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graph G(t) representing the undirected communication network at time t with a
symmetric adjacency matrix such that gik = 1 if a link exists between agent i and k

at time t and 0 otherwise. The authors specify that they include self connections, i.e
gii = 1, ∀i. Upon receiving information from a neighbor k, agent i will, for each task
j, update his winning bid list with what agent k bid on task j. Then updates the
winner agent zij (line 5 of algorithm 3, index of the agent that holds the highest bid
for task Ji). Finally, if the winner for task Ji isn’t the agent i, he unallocates himself
in his allocation vector (line 7 of algorithm 3). If all the tasks are not allocated,
phase 1 starts again. The second phase of the algorithm is described in Algorithm
3.

Algorithm 3 CBAA - Phase 2: Consensus Process (Conflict Resolution)
Require: yi: Winning bid list, xi: Task assignment list, G: Communication net-

work
1: Send yi to all neighbors k where gik = 1
2: Receive yk from all neighbors k
3: for j ∈ J do
4: yij ← maxk(gik · ykj) ▷ Max-consensus update
5: zij ← arg maxk(gik · ykj) ▷ Determine winner
6: if ziJi ̸= i then ▷ If outbid, release task
7: xiJi ← 0
8: end if
9: end for

As a fail-safe, the authors assume that ties occurring in determining Ji in phase
1 or ziJi in phase 2 are resolved in a systematic way. For example, a lexicographical
tiebreaking heuristic based on the agent and the task identification numbers can be
used.

CBBA - Definition

After defining the CBAA, the authors introduce the Consensus-Based Bundle Algo-
rithm, which extends the CBAA to handle multi-task assignment for decentralized
task allocation in MAS. The main difference being that CBBA allows an agent to bid
on multiple tasks as a sequence (bundle). This method still ensures a conflict-free
allocation. Consequently, the formulation of the problem is slightly different :

max
Nu∑
i=1

Nt∑
j=1

cij(xi, pi)xij (3.7)

where:

• xij is a binary variable (allocation vector) indicating if task j is assigned to
agent i
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• cij(xi, pi) is the reward function based on agent i’s task assignment xi and the
execution sequence (path) pi

• pi the path, is an ordered sequence of tasks assigned to agent i

With these new elements, the logic of the constraints remain the same. Each
agent can handle at most Lt tasks (system parameter the user can change)

∑Nt
j=1 xij ≤

Lt,∀i ∈ I. Similarly to CBAA, each task is assigned to at most one agent. Finally,
the total number of assigned tasks is bounded for the same logical reasons stated in
3.2.2:

∑Nu
i=1

∑Nt
j=1 xij = Nmin, Nmin = min(Nt, NuLt).

CBBA - Algorithm

The CBBA also consists of two iterative phases. The first being the bundle con-
struction where each agent greedily (highest reward first), and independently builds
a sequence of tasks based on local bid values. The second phase is the consensus
phase where agents exchange their bid values and winning agent list with neighbors.
Tasks with conflicts are released and agents adjust their bundle accordingly. In this
section I will go in the detail of each of those phases and discuss how it produces a
robust and dynamic task allocation solution.

Similarly, CBBA has knowledge of yi the winning bid list, storing the highest
bids observed for each task. However, the first phase of CBBA also introduces three
new elements (the path pi described earlier being one of these elements) :

• bi: bundle of tasks assigned to agent i, stored in the order they were selected

• zi: winning agent list, indicating which agent currently holds each task

Each agent builds a bundle by iteratively adding tasks that provide the highest
marginal gain:

cij [bi] = max
n≤|pi|

Si(pi

⊕
n

j)− Si(pi) (3.8)

where Si(pi) is the total score of agent i for its current path pi and Si(pi
⊕

n j)
represents the total score when inserting task j at position n in the path to maximize
gain. The agent selects the task that maximizes its marginal gain defined in 3.2.2
subject to bid constraints:

hij = 1(cij > yij), Ji = arg max
j

(cij .hij) (3.9)

Meaning that the task must be valid, i.e. the bid agent i makes on task j must be
higher than the actual winning bid on task j. And that Ji is the task that has the
highest bid in the scalar product of cij .hij (which is a matrix of Nt ×Nu indicating
the reward for completing valid task j for agent i). After selecting the tasks, the
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bundle is updated recursively:

bi ←− bi

⊕
end

{Ji}, pi ←− pi

⊕
ni,Ji

{Ji} (3.10)

Algorithm 4 CBBA - Phase 1: Bundle Construction (Task Selection)
Require: cij : Task bid for agent i, yi: Winning bid list, zi: Winning agent list, bi:

Bundle of tasks, pi: Path sequence
1: Initialize yi ← 0, zi ← ∅, bi ← ∅, pi ← ∅
2: while |bi| < Lt do ▷ Check if the bundle is full
3: for j ∈ J \ bi do ▷ Loop over unassigned tasks
4: Compute marginal gain: cij [bi] = maxn≤|pi| Si(pi ⊕n j)− Si(pi)
5: Compute eligibility: hij = I(cij > yij)
6: end for
7: if

∑
j hij > 0 then ▷ If valid tasks exist

8: Ji ← arg maxj(cij · hij) ▷ Select task with highest gain
9: Determine optimal insertion position: ni,Ji = arg maxn Si(pi ⊕n Ji)

10: Update bundle: bi ← bi ⊕end {Ji}
11: Update path: pi ← pi ⊕ni,Ji

{Ji}
12: Update winning bid: yi,Ji ← ci,Ji

13: Update winning agent: zi,Ji ← i
14: else
15: break ▷ Exit if no valid tasks remain
16: end if
17: end while

where ni,Ji is the optimal insertion position and
⊕

end means the task Ji is added
at the end of the bundle. This process continues until the bundle reaches its limit
|bi| = Lt or no valid tasks remain. Algorithm 4 describes the process of the first
phase.

The second phase of CBBA consists of solving conflicts and re-iterating the first
phase until a consensus is reached. Following a network defined by a undirected
graph G, agents communicate three pieces of information with their neighbors (ac-
cording to the adjacency matrix of the graph, similarly to CBAA): the winning
bid list yi, the winning agent list zi, and a timestamp vector si, tracking the last
update time. With the information received, each agent will compare bid values
with its neighbors and apply a rule that updates yi with the highest bid among the
neighbors for task j, and update zi with the winning agent of task j. To resolve
conflicts, CBBA applies a set of update rules: (i) if an agent receives a higher bid
for a task it previously won, it releases the task and updates its bundle accordingly,
(ii) if conflicting information about a task’s winning agent exists, the agent follows
a max-consensus rule, prioritizing the highest observed bid and most recent update
thanks to the timestamp information si, and (iii) in cases of ties, a predefined pri-
ority mechanism ensures deterministic resolution (the table of rules is detailed in
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the article [29]). If another agent k has a higher bid, then agent i releases task j by
removing it from bi and pi. Additionally, any tasks selected after j in the bundle
are removed to maintain consistency. From here, the algorithm returns to the first
phase, and new tasks are added ensuring all agents to reach an agreement on task
allocations.

CBBA - Convergence

Authors prove that CBBA guarantees convergence in at most DNmin iterations,
where: D is the diameter of the communication network (i.e. the longest shortest
path between agents), and Nmin is the number of assigned tasks. According to the
theorem presented in the article, if the network is connected and every agent has a
consistent scoring function, CBBA converges to a conflict-free assignment within :
TC ≤ DNmin. Proof is detailed in the original paper. Moreover, the authors also
demonstrate that CBBA guarantees a solution that is at least 50% optimal compared
to the best centralized solution. Compared to previous consensus-based methods,
agents do not need to share identical Situational Awareness (SA). In fact, only the
bid values yi are shared, so even if two agents perceive different environments, the
auction mechanism inherent to each agent naturally selects the best bids without
requiring SA synchronization in a centralized way [52, 53]. Authors show that the
same results are obtained with CBAA in terms of convergence and optimality. In
fact, applying CBBA with Lt = 1 results in executing CBAA.

CBBA - Efficiency

Unlike traditional consensus-based methods that require full situational awareness
agreement, CBBA only relies on bid exchanges, making it robust to communica-
tion constraints and inconsistencies in environmental perception. This decentral-
ized and computationally efficient approach makes CBBA well-suited for dynamic,
distributed multi-agent task allocation problems, such as robotic coordination, Un-
manned Aerial Vehicle (UAV) fleet management, and distributed sensor networks.
Compared to traditional auction algorithms such as Sequential Auctions [54] and
Prim Allocation [55], where tasks are allocated one at a time and rely on a single
auctioneer, CBBA is computationally more efficient and decentralized allowing for
asynchronous task allocation. And compared to other decentralized methods such
as Implicit Coordination [56] and ETSP-ASSIGNMT [57] that require consistent
situational awareness across all agents that make it difficult to maintain in real-
world scenario with communication limitations, CBBA outperforms these methods
by requiring only bid exchanges across a simple network and using a max-consensus
approach achieving faster convergence while remaining consistent. Finally, when
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compared to centralized task allocation strategies such as Mixer Integer Linear Pro-
gramming (MILP) [58] that provide globally optimal solutions but are intractable
for real-time MAS, CBBA, though suboptimal in the worst CBBA, achieves near
optimal performance in practice while being computationally viable and scalable to
large numbers of agents and tasks.

The results demonstrate that CBBA outperforms existing decentralized auction-
based methods in terms of convergence speed, computational efficiency, and robust-
ness to communication failures. Numerical simulations confirm that CBBA achieves
near-optimal assignments while maintaining a low computational burden. Although
it can be debated that homogeneous agents do not illustrate well real-life scenarios,
research could be made on extending CBBA to heterogeneous agent capabilities and
incorporate learning-based task allocation instead of having deterministic rules pre-
defined. In fact, I can speculate that CBBA would not perform well in adversarial
or uncertain environments. Which is why, I will introduce a technique that incor-
porates heterogeneous agents able to follow adaptive or non adaptive selection rules
for load balancing in the next section.

Adaptive Load Balancing

Previously introduced auction-based methods rely on deterministic procedures and
a set of rules that eventually converges to conflict free task allocation among a fleet
of agents. In spite of being scalable and computationally viable, these methods
only perform well in environments that are stable and predictable. To delve further
into decentralized systems being adaptive, robust, and in agreement with real-life
scenarios constraints, authors such as Schaerf et al. [36] propose a framework called
Multi-Agent Multi-Resource Stochastic System (MAMRSS) system to address the
problem of load balancing. This framework involves a set of agents, a set of resources,
probabilistically changing resource capacities, probabilistic assignment of new jobs
to agents, and probabilistic job sizes. An agent must select a resource for each
new job, and the efficiency with which the resource handles the job depends on the
capacity of the resource over the lifetime of the job as well as the number of other
jobs handled by the resource over that period of time. They show that performance
measure for the system aims at globally optimizing the resource usage in the system
while ensuring fairness (that is, a system shouldn’t be made efficient at the expense
of any particular agent). This section aims to present this method that takes its
roots in the reinforcement learning framework. However, in the paper, the authors
give close to no detail about the actual RL algorithm they used. I will try to clarify
this for the reader.
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Multi-Agent Multi-Resource Stochastic System

Before introducing the framework, it is important to state the interpretation of
reinforcement learning and load balancing the authors adopt. The model they adopt
is inspired of models used in distributed AI and organization theory. Namely, they
assume a strict separation between agents and resources. Jobs arrive to agents who
make decisions about which resource they will move to in order to execute the jobs.
To illustrate their problem, the authors mention a problem introduced by Arthur et
al. [59] (inspired by the El Farol bar problem): An agent, embedded in a multi-agent
system, has to select among a set of bars (or a set of restaurants). Each agent makes
an autonomous decision but the performance of the bar (and therefore of the agents
that use it) is a function of its capacity and of the number of agents that use it. The
decision of going to a bar is a stochastic process but the decision of which bar to use
is an autonomous decision of the respective agent. The model presented is a general
model where such situations can be investigated. In these situations a job arrives to
an agent who decides upon the resource (e.g., restaurant) where his job should be
executed; there is a-priori no association between agents and resources since agents
rely on purely local information.

Formally, the Multi-Agent Multi-Resource Stochastic System, is defined as a
6-tuple:

M =< A, R, P, D, C, SR >

where:

• A = {a1, a2, ..., aN} is the set of agents (decision-makers).

• R = {r1, r2, ..., rM} is the set of resources (job execution sites).

• P : A×N −→ [0, 1] is a job submission function where P (a, t) is the probability
that agent a submits a job at time t.

• D : A×N −→ R+ is a job size function where D(a, t) gives the size of the job
submitted at time t.

• C : R × N −→ R+ is a probabilistic resource capacity function where C(r, t)
denotes the available capacity of resource r at time t.

• SR is a resource selection rule that determines how agents assign jobs to
resources.

Intuitively, each of the resources has a certain capacity, which is a real number;
this capacity changes over time, as determined by the function C. At each time
point each agent is either idle or engaged. If it is idle, it may submit a new job with
probability given by P . Each job has a certain size which is also a real number.
The size of any submitted job is determined by the function D. (the authors will
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use the unit "token" when referring to job sizes and resource capacities). For each
new job the agent selects one of the resources according to the selection rule SR.
The authors emphasize that any job can be run on any resources, and that there is
no limit on the number of jobs served simultaneously by a given resource, meaning
no queuing occurs. This last aspect makes the framework stray from real-life ap-
plications where, given the a system, queuing has to occur if for some reason only
one resource remains available after the others fail (e.g. a server cannot endlessly
process jobs with no time cost). Although it can be argued that given a selection
rule SR agents would deliberately stop submitting jobs to the last standing resource
in order to avoid overflowing it, the global system performance would decline, such
assumption reduces significantly the panel of applications.

The job execution model is quite straightforward. Each resource has a capacity
C(r, t) at time t, and it must distribute this capacity among all currently executing
jobs. If resource r is serving k jobs at time t, each job receives an equal share of
the capacity capacity per job = C(r,t)

k(t) . The execution time Tj of job j with size Sj

assigned to resource r is given by:

Tj =
tstop∑

t=tstart

Sj

capacity per job(t)

where tstart is the time the job was submitted, tstop is the time the job completes,
and capacity per job(t) is the capacity allocated to a job at time t.

The system’s objective is to minimize the average execution time per token (or
maximize the system throughput) defined as E[T

S ], where T is the total execution
time, and S is the total number of tokens processed.

Multi-Agent Reinforcement Learning Framework

The MARL framework 3 is expressed through the local information each agent carries
and the selection rule SR. In fact, each agent maintains an efficiency estimator eeA,
which represents its learned assessment of each resource’s effectiveness. In addition
to eeA, agent A keeps a vector jdA ∈ N|R|, which stores the number of completed
jobs which were submitted by agent A to each of the resources, since the beginning
of time. The efficiency estimator is defined as:

eeA = {eeA(r1), eeA(r2), ..., eeA(rM )}
3In this article [36] the authors give close to no details on the implementation of their so called

"MARL" framework and the technology used to lead the experiments.
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where eeA(r) represents the estimated performance of resource r. It is updated each
time a job assigned to resource r is completed:

eeA(r)←−WT + (1−W )eeA(r)

where:

• W is a dynamic learning rate parameter.

• T is the time per token for the job, computed as :

T = tstop − tstart

S

W is a dynamic learning rate, in fact it is resource-specific and is defined as:

W = w + (1− w)
jdA(r)

where w is a constant that controls how much recent experiences influence learning.
The term (1−w)

jdA(r) is a correcting factor, which has a major effect only when jdA(r)
is low; when jdA(R) increases, reaching a value of several hundreds, this term be-
comes negligible with respect to w. After defining what the agent effectively learns
throughout the execution, the authors define how resources are selected based on
eeA and jdA.

As specified in the definition of the MAMRSS, the resource selection probability
pdA(r) determines how likely an agent is to choose a particular resource. The authors
first define a derived version of this function : pd′

A(r)

pd′
A(r) =

eeA(r)−n if jdA(r) > 0

E[eeA]−n if jdA(r) = 0
(3.11)

Here, n ∈ R+ and E[eeA]−n the average of the values of eeA(r) over all resources
with more than 0 jobs done. The authors define the submission probability function
as the normalized version of pd′

A(r):

pdA(r) = pd′
A(r)
σ

, σ =
∑

r

pd′
A(r)

4

How the function pdA is constructed makes it highly biased towards resources
that have performed well in the past (the order of magnitude of pd′

A defined in
Equation 3.11 is much more important when jdA(r) > 0). The strength of the bias

4The use of the normalization factor σ is because if no jobs have been completed over all the
resources, the choice is random with a uniform probability distribution
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comes from n which is the exploration factor. Higher values of n mean stronger
exploitation (choosing historically best resource), while lower values of n encourages
more exploration. Although this bias of always choosing the historically most ef-
ficient resource seems like cheating, it is in general not a good policy; it does not
allow agents to exploit changes, or improvements in the capacity or load on other
resources.

To summarize the MARL framework, the authors defined a MAMRSS in which
agents use a family of adaptive resource selection-rules, parametrized by a pair
(w, n). These parameters serve as knobs to tune and optimize the system’s perfor-
mance.

Experimental Setup

In the article, the authors define an experimental setup where they compare adaptive
selection rules (defined in the previous paragraph) to non-adaptive selection rules
(agents assigned to resources), and a load-querying selection rule where agents query
each resource and submit the job to the less crowded one. The simulation is setup
as such:

• Number of agents N = 100

• Number of resources M = 5

The 5 resources have, at first, a fixed capacity : [c1 = 40, c2 = 20, c3 = 20, c4 =
10, c5 = 10], ci being the capacity of resource i. The authors are particularly moti-
vated to be as close as possible with real situations (for such a setup can be derived
into many situations). Hence, they assume that each point in time corresponds to
a second and count the time in minutes, hours (point of reference at which changes
in the system will occur), days, and weeks. The probability of submitting a job at
each second, which corresponds to the load of the system, can vary over time; this
is the crucial factor to which the agents must adapt. Agents can submit jobs at any
second, but the probability of such submission may change. In particular the article
concentrates on three different values of this quantity:

• Low Load (Llo)=0.1%

• High Load (Lhi)=0.3%

• Peak Load (Lpeak)=1%

The authors also assume that the job size function is a uniform distribution over the
integer range [50, 150]. Finally, the performance metric is the execution time per
token T defined earlier.
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Performance Findings

First, the experiments demonstrate that adaptive resource-Selection Rules (SR) sig-
nificantly improve system performance compared to non-adaptive approaches. While
fixed resource allocations perform well in static environments, they fail to adjust to
dynamic changes in load and resource availability. Adaptive SR, by contrast, al-
low agents to respond effectively to fluctuating conditions. When the system is
at its peak load Lpeak, adaptive SR outperform fixed allocations by reducing av-
erage execution time per token by 5 to 10%, in dynamic environments where load
varies unpredictably, adaptive SR offer an efficiency gain of up to 20% over static
strategies. However, the load-querying SR achieves the best possible efficiency, but
require real-time communication, which is not always possible in uncertain of partial
environments.

Moreover, the study identifies that certain values of the model’s parameters w

(learning rate) and n (exploration factor) will lead to different conclusions:

• A moderate level of exploration (n = 3 to 5) achieves the best performance,
ensuring adaptation while avoiding excessive inefficiency.

• Higher values of w leads to faster adaptation in dynamic settings, while low
values of w cause agents to respond slowly.

• If n is set too high, resources a overwhelmed because agents choose the histor-
ically best resources, as expected.

• If n is set too low, the decision-making is inefficient as agents fail to use best
resources.

These findings perfectly illustrate the trade-off between exploration and exploitation
that is a common issue in reinforcement learning.

Then, the authors assess the effect of dynamic load conditions where the load
is periodically changed every hour, and another scenario where the load changes
in random fluctuations. The article shows that adaptive SR always outperform
the static SR, showing that adaptive reinforcement learning is globally effective in
handling uncertain environments.

In this work, I previously mentioned the study of interaction between agents
of different nature as it is an important factor to take into consideration in MAS.
Here the article considers the non-cooperative setup literally and uncover a "parasite
effect":

• Agents that engage in less exploration benefit from the exploration effort of
others. Such result does not necessarily illustrate the fairness researchers would
seek in a MAS.
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• Exploitative agents achieve lower execution times at the expense of cooperative
agents.

• When all agents behave in their own interest (pure exploitation, n high), the
system performs worse overall, demonstrating a Prisoner’s Dilemma effect (res-
onates with the findings in game-theory based methods).

Further into agent interaction, I also need to mention inter-agent communica-
tion. Up to this point of the study, the authors have assumed that there was no
direct communication among the agents, which is in agreement with the MARL
framework where interesting results occur when real-life forces agents to act with-
out a-priori arranged communication channels and only rely on feedback mechanism
and local information. However, the authors wished to observe the effect of agents
with augmented capabilities such as a naive communication on the system efficiency.

The authors introduce the concept of neighborhood in which agents, with the
reflexive, symmetric, and transitive relation neighbor of, can share information. This
relation partitions the population into neighborhoods. And in such neighborhoods,
when a decision is made (i.e. when an agent chooses a resource), the average of
the neighborhood efficiency estimator eeA is shared. That is, the average of eeA

among all agents in a same neighborhood. While neighborhoods may not follow
the same selection rule SR, agents within a same neighborhood all follow the same
SR. The results of the experiment with Communicating Neighborhoods (CN) and
Non-Communicating Neighborhoods (NCN) are the following:

• Large communication neighborhoods (20+ agents) tend to be too conservative
relying on the best resource only. Since the communicated information is the
average eeA, the perception of the system is too static. For values of w and
n that give the best results in non communicating neighborhoods, they give
poor results in communicating neighborhoods in separate experiments.

• When confronting communicating and non communicating neighborhoods of
large size, both display this conservative aspect using the best resource, but
CN outperform NCN because they use it in a smarter way due to the fairer
picture of the environment provided by the communication mechanism.

These results lead to the conclusion that communication may not provide useful
means to improve the performance of the system in the article setting. However,
it remains interesting to see that CN outperform NCN when confronted with the
exact same setting.

3.2.3 Conclusion on Decentralized Methods

In this section I have presented decentralized methods leveraging agent autonomy,
local decision-making and agent interaction. We’ve seen that some methods use of
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game-theoretic background in section 3.2.1 considering setups as non-cooperative
games to form allocations and then using stochastic algorithms to optimize these
allocation while ensuring a Nash Equilibrium and fairness among agents such that
none would benefit from changing its final allocation. Other methods leverage dis-
tributed optimization means in Section 3.2.2 considering the system as a global
auction where each agent is its own auctioneer and buyer. These methods also
introduce naive communication mechanisms, that don’t always benefit the system
globally, but illustrate how complex systems could benefit from such capabilities.
The proposed decentralized methods are shown to be more efficient than their cen-
tralized analog and much more robust to uncertain environments. Which, in real-life
scenarios, is preferable since we cannot always ensure the environment stability and
integrity. They also incorporate agents of different nature to illustrate cooperation,
or conservatism, to better understand the system.

In the next section, we will see the Centralized Training and Decentralized Execu-
tion that leverages a centralized training phase, where agents learn optimal policies
using global knowledge, but during execution, they operate independently based on
local observations.

3.3 Centralized Training, Decentralized Execution

Deep Reinforcement Learning (DRL) is a very famous area of artificial intelligence
and having been applied mostly to single-agent settings, it has achieved outstanding
success in a wide range of applications. In the context of load balancing or task allo-
cation, DRL involves more than one independent learner. As we have seen before, it
is important for each agent to collaborate jointly to maximize a global metric or en-
sure fairness among agents. Researchers have attempted to tackle Multi-Agent Deep
Reinforcement Learning (MADRL) problems by using single-agent DRL algorithms
[60]. Despite promising results the main issue pointed out by the community was
the environment non-stationarity that goes against stable DRL methods because
individual agents can no longer perceive their environment as being stationary since
it is also influenced by other agent’s activity. This issue has promoted the widely
used paradigm known as Centralized Training and Decentralized Execution [61, 62].
Moreover, mechanisms such as agent-communication that my work introduced in
the previous section as well as policy-gradient techniques adapted to MAS [63] have
been proposed to handle the common situation where every agent only has a partial
view of their learning environment and other agents.

In this section, I will present methods using the CTDE paradigm. I will empha-
size on methods leveraging reinforcement learning and deep learning and present
the advantages each of the methods get from using the CTDE paradigm and how it
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represents an overall advantageous approach for tackling challenges linked to solving
problems in multi-agent systems.

3.3.1 Centralized-Decentralized Reinforcement Learning

As discussed in Section 3.1 addressing centralized methods, Fisher market-based
or auction-based methods have been extensively utilized in load balancing for their
ability to model resource allocation as a competitive equilibrium problem. These
methods perform well in distributed systems by treating resources as divisible goods
and users or tasks as buyers with budgets or bids, aiming to maximize utility through
market-clearing prices for FMC_TA or stochastically minimizing the cost of alloca-
tions throughout the system for SCA. While effective in scenarios with well-defined
preferences and budgets, these methods often fall short in dynamic environments
where workloads and resource conditions fluctuate unpredictably or when the sys-
tem needs to be deployed on a larger scale, these sequential methods do not yield
the best results, where decentralized methods introduced in Section 3.2 are able to
adapt to dynamic and varying environments.

Centralized reinforcement learning addresses these limitations by replacing static
equilibrium-driven approaches with adaptive, trial-and-error-based decision-making
frameworks. Unlike Fisher market models or auction models, RL agents dynami-
cally learn optimal policies by interacting with the system, continuously updating
their strategies to reflect real-time changes making the agents much more robust
not relying on heuristic strategies (e.g. hill-climbing) but purely on the environment
state and their previous experience. This adaptability makes RL-based frameworks
particularly suitable for cloud computing, or when interacting with fleets of robots,
where workloads are inherently volatile, the environment changes, and system met-
rics evolve rapidly. Moradi et al. [64] introduces a novel approach called Centralized
Learning Distributed Scheduling (CLDS) for job scheduling in Grid computing envi-
ronments. This paper proposes a novel framework for multi-agent job scheduling in
Grid computing. CLDS effectively integrates centralized learning with distributed
scheduling [65] to address critical challenges such as load balancing, fault tolerance,
scalability, and adaptiveness in heterogeneous and dynamic grid environments.

The main contribution of this method is that it employs a single modular learner
agent to manage a global utility table, which is used to assess the efficiency of
available resources. This modular learner, if failing, can be replaced by any other
agent in the system while learning. In addition to this modular manager, multiple
scheduler agents are responsible for job scheduling. They provide local rewards
based on real-time feedback from job execution, which are taken into account by the
manager to update the utility table. Schedulers use the updated utility table for
resource allocation decisions ensuring a consistent view of the grid across all agents
to maximize utility.
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CLDS Algorithm

As previously introduced, the CLDS algorithm is composed of multiple components
such as a learner agent, responsible for aggregating feedback from scheduler agents.
The latter handles job allocation to resources using the utility table. They also
generate rewards based on the performance of the allocated resources and send
them to the learner agent. The utility table U (which is a near equivalent of the
standard Q-table used in tabular Q-learning [18], except it is not a mapping of
state and action but rather a map of hot points where utility is maximized), is a
vector where each entry U(q) represents the efficiency of resource q. It is updated
iteratively based on the feedback from the scheduler agents. Finally, reward vectors
are generated by scheduler agents for all resources based on job performance. Each
element in a reward vector corresponds to the performance of a specific resource.

The author defines two steps in the CLDS algorithm that occur in discrete time
steps.

Generating Local Rewards (Scheduler Agents)

In order to for the scheduler agents to perceive the performances of the resources of
the environment, they must begin by generating local information from the current
utility table (initialized at 0 for each resource). To do so, each scheduler agent
allocates jobs to resources, and after the job execution, rewards are generated for
each resource based on job performance :

1. For a completed job jk submitted to resource rq, the reward is :

R(rq) = JobSize(jk)
TimetoCompletion(jk) (3.12)

where JobSize(jk) is the size of the job, TimetoCompletion(jk) is the total time
taken by rq to complete jk. This way, it is ensured that resources completing
jobs faster receive higher rewards (which is in agreement with the paper’s
application for job scheduling).

2. For an unfinished job jk, a negative reward is applied (penalty) :

R(rq) = − 1
JobSize(jk) . (3.13)

That way larger jobs produce small penalties, as they require more time to
complete.

3. The scheduler agent sums up all the positive and negative rewards for each
resource and forms the reward vector R(q). Each element of the reward vector
corresponds to the cumulative local reward for a specific resource.
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Updating the Utility Table (Learner Agent): After generating local reward
information with the scheduler agents, the learner agent collects reward vectors R(q)
from all scheduler agents and updates the global utility table as follows :

U(q) = (1− α)× U(q) + α
∑

iRi(q) (3.14)

where:

• U(q) is the utility of resource q.

• α is the learning rate, determining how quickly new rewards influence the
utility.

• Ri(q) is the reward for resource q provided by scheduler agent i.

This update allows the learner agent to provide a global view of resource efficiency
for the scheduler agents. After an update, the utility table is shared with all the
scheduler agents and they refer to it during the next step.

Job Scheduling (Scheduler Agents): Using the previously updated utility
table, each scheduler agent allocates jobs in its queue to the most efficient resources
:

1. For each job jm the scheduler selects the resource rq with the highest utility
value in the utility table U :

rq = arg max
q

U(q) (3.15)

2. The scheduler submits the job jm to rq and records an entry in the scheduled
job list with the following details: job id jm, resource id rq, start time t, and
completion time t′.

After being submitted the job is removed from the scheduler’s queue. This scheduling
phase, in contrast with the centralized learning phase, is decentralized among all
agents.

As mentioned when introducing the algorithm, the authors made sure that fault
was tolerated and handled during the sequential process.

Fault Handling: In case the learner agent fails, any scheduler agent can assume
it’s role. The learner agent has no special capabilities beyond aggregating and
updating the utility table, making it replaceable by any scheduler agent. I assume,
the authors implemented it quite easily by making the agents inherently all capable
of doing so but activating this "learner" role when needed. The learning is ensured
with the reinforcement learning framework
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Proposed Details on the Reinforcement Learning Framework

The design of the RL framework for the CLDS ensures adaptability to dynamic and
heterogeneous environments without requiring prior knowledge or an explicit model
of the system. The authors giving no specification in their article, I assume it is
defined as follows for my work:

• State Representation : the state of the system is represented by the utility
table U maintained by the learner agent. This table reflects the performance
of all resources based on rewards, so it allows a feedback. It is a very simple
way of representing the grid.

• Action Space : the actions correspond to the job scheduling decisions made by
the scheduler agents. In fact, they can choose a resource from the state of U .
Specifically using 3.15.

• Reward Function : the reward is central to the learning process and ensures
that resource allocation aligns with system goal. This reward is computed
using either 3.12 or 3.13 if, respectively, the job was finished or not. After that
the learner agent can use 3.14 to update the utility table with the collected
rewards.

• Coordination and Convergence : by sharing the updated utility table with all
scheduler agents, the method avoids inconsistencies and miscoordination that
could arise in decentralized systems. Each scheduler agent relies on this glob-
ally updated utility table to make independent, yet synchronized, job schedul-
ing decisions. Over time, the reinforcement learning process allows the system
to converge to a sub-optimal or near-optimal scheduling policy. This means
that as the utility table evolved, the scheduler agents allocate jobs in a way that
balances loads, improves resource utilization, and minimizes response times,
even under varying system loads and scales.

In addition to being a strong combination of centralized and decentralized paradigms,
the authors specify that CLDS has a relatively low computational complexity thanks
to its efficient communication and computation design. In fact, the communication
cost grows linearly with the number of scheduler agents (N) and resources (Q), as
each scheduler agent sends a reward vector of size Q to the learner agent at each time
step. The learner agent aggregates these vectors, updates the global utility table,
and broadcasts the updated table back to all scheduler agents. The total commu-
nication cost per time step is O(N.Q), making it scalable for large systems. As for
scheduler agents, their complexity is linked to the reward generation and resource
selection based on the utility table. For J jobs and Q resources, the complexity is
O(N.J) for reward calculation and O(Q) for resource selection. Finally, the learner
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can aggregate the rewards with a complexity of O(N.Q) making it very lightweight
and scalable tackling one of the major issues of centralized methods. And while be-
ing initially developed for job scheduling, it is very easy to adapt it to more general
load balancing problems. However, CLDS is only capable of reaching near-optimal
policy in dynamic environment, but considering it’s efficiency and robustness it is
an interesting trade-off.

3.3.2 Multi-Agent Deep Reinforcement Learning

Starting from the foundations of centralized learning from the previous section, this
section will address an article that explores the multi-agent reinforcement learning
for task allocation in dynamic environments. The proposed approach, Task Alloca-
tion Process using Cooperative Deep Q-learning (TAP CQDL) [66], leverages Deep
Q-Networks [20] to enable agents to learn efficient task distribution strategies while
adapting to an evolving system state. To address the challenges of decentralized
execution, the study integrates Cooperative Deep Reinforcement Learning (CDRL)
with communication-driven learning using CommNet [67], a neural network model
that acts as a simple controller for multi-agent reinforcement learning that is able
to learn continuous communication between a dynamically changing set of agents.

The study builds upon fundamental concepts in reinforcement learning and
Markov Decision Processes referred to in the introduction of my work 2.2. Par-
ticularly, Q-learning [18] is used as an off-policy RL method, updating Q-values for
state-action pairs iteratively. However, when facing a high dimensional space, this
method falls short or performance. In this article, the Deep Q-Learning (DQL)
framework is used since the state space the authors will use is continuous. In this
framework, the tabular aspect is dropped and the Q-value of a state-action pair
is estimated using neural networks. The article also leverages extensions such as
Independent Q-learning [60] allowing multiple agents to learn in parallel.

Cooperative Deep Reinforcement Learning Strategy

The strategy introduced in the paper is called Cooperative Deep-Q-Learning (CQDL),
and it enables agents to coordinate their actions using communication-enhanced Q-
learning. The core formulation of the setup follows standard , but the authors
propose a few modifications that I will present.

Q-function Representation

Similarly to the standard definition, each agent a maintains a Q-network parametrized
by θ, estimating the action-value function:

Q(s, a; θ) = Eπ[Rt|st = s, at = a] (3.16)
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where s is the state, a is the action and Rt is the discounted future reward.
In the DQL setting, the bellman update is slightly different than for the Q-

learning setting. In fact, it incorporates temporal difference (TD) error that repre-
sents the loss function of the network (that the optimizer will try to minimize):

Li(θi) = Es,a,r,s′ [(γDQN
i −Q(s, a; θi))2] (3.17)

with γDQN
i being the target value of the estimation computed with the next state-

action pair. Now that each agent can individually learn to estimate the Q-values
and update their parameters, they can communicate with other agents in the envi-
ronment in order to create a coordination that improves with learning.

Multi-Agent Learning with Communication (CommNet)

To facilitate coordination, each agent transmits a continuous communication vector
cj , allowing message aggregation across agents:

ct+1
j = 1

N − 1

N∑
i ̸=j

ht
i (3.18)

where N is the total number of agents in the system, and ht
i is the hidden state

of agent i at time t. The CommNet-based Q-function is then updated taking into
account both the communication vector, the hidden state, and the agents observa-
tions:

ht+1
i = f(ht

i, ct
i, ot

i) (3.19)

with ot
i being the agent’s observation and f a neural network. I won’t delve into

the details of how CommNet works or the specific architecture of the strategy as it
strays from the topic of this thesis and won’t bring any additional value to my work.

With this communication-enhanced version of DQN, during training all agents
share their experiences, optimizing the joint policy:

π(a|s, c) = arg max
a

Q(s, a, c; θ) (3.20)

Similarly to multi-agent reinforcement learning, the joint policy is an aggregation
of all the agent’s policies created during a centralized learning phase. During exe-
cution, each agent selects actions independently in a decentralized manner, relying
only on its learned Q-network and local observations.

3.3.3 Task Allocation Process using CQDL

After specifying the underlying processes of their strategy, the authors define the
task allocation process using the CQDL strategy. They make the assumption of full
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cooperation between agents. They define the following elements when formulating
the social task allocation problem :

• A = {a1, ..., am} a set of agents.

• R = {r1, ..., rk} the collection of resources available to A.

• T = {t1, ..., tn} the set of tasks where each task ti is defined by the tuple
{u(ti), rsc(ti), loc(ti)} with:

– u(ti) is the utility gained if task ti is accomplished, they assume it is
identical to the reward Rt in Equation 3.16.

– rsc(ti) is a function that specifies the amount of resources required to
complete ti.

– loc(ti) is a function that specifies the location at which tasks arrive in the
social network SN . An agent a on which the task arrives (i.e. loc(ti) = a

is called the manager of the task ti.

In this problem, each agent a ∈ A controls a fixed amount of resources for each
resource type in R, which is defined by a resource function rsc : A × R −→ N .
Agents are connected via a social network, which is an undirected graph SN .

More specifically, each agent is defined by a 5-tuple:

{AgentId(a), Neig(a), Resource(a), State(a), Qa(oa
t , ca′

t−1, ha
t−1, aa)}

where AgentId(a) is the identity of the agent, Neig(a) is the set which indicates the
neighbors of agent a, Resource(a) is the resource which agent a contains, State(a)
demonstrates the state of agent a, and Qa(oa

t , ca′
t−1, ha

t−1, aa) is the Q-network of
agent a (ha

t−1 is the individual hidden state of agent a, oa
t is the observation, ca′

t−1
the messages from other agents during the communication, and aa the action of
agent a. Each of these at time t).

Finally the authors define a task allocation, which is mapping ϕ : T×A×R −→ N

(i.e. a mapping of a set of tasks assigned to agents with resources). In addition to
finding a mapping, where no tasks are left undone and the resource constraints are
respected, the agents maximize the reward in the environment to achieve an overall
goal.

Algorithm Detail

The article describes the execution algorithm as a decentralized approach where
agents communicate and allocate tasks efficiently. The authors define 3 type of
agents for their MAS:
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• Manager : the agent which requests help for its task when it is not able to
complete it himself.

• Participant : the agent which accepts and performs the announced task.

• Mediator : the agent that receives another agent’s commitments for assistance
to find Participants.

At all time, and agent is either Busy (when the agent is a Manager or a Participant),
Committed (when an agent is a Mediator), Idle (when an agent is not assigned or
committed to any task). Logically, only idle agents can be assigned to a new task
as a Manager or a Participant, or committed as a mediator. I detailed the general
idea of the process in the algorithm presented in appendix 6.

The function ResAnnounceMess is essentially a call to all neighbors asking for
participation to complete the task the manager agent has just received. Upon re-
ceiving the result of function ProposeMess, the manager agent utilizes CommNet
to process the state-view s of all neighboring agents, encoding and iterating over
hidden states h and communication vectors c to obtain hk defined at 3.19. It then
samples actions a for its neighbors based on the learned Q-values Q(a, s) computed
with 3.16. If the manager finds multiple suitable agents based on resource proposals,
it applies a roulette selection to pick an agent based on its utility (reward), choosing
the one with the highest utility and marking this selected agent as busy. If multiple
agents share the same utility, is selects the one with the shortest execution time
(information relayed by the agent, the authors do not specify when or how it is
initialized). However, if only one agent is available, the manager assigns the task in
a greedy way not considering utility. Finally, the function RefuseMess is simply a
message stating that a neighboring agent isn’t idle.

Performance Evaluation

The experiments in this paper evaluate the effectiveness of the process introduced in
the previous section, by comparing it against Greedy Distributed Allocation Protocol
(GDAP) [68] and a previous task allocation algorithm developed by the authors
(TAP) [66] that does not use cooperative deep q-learning. The evaluation focuses on
utility ratio and execution time in different network settings to assess the efficiency,
scalability, and communication overhead of the proposed approach.

The authors specify the GDAP is a distributed task allocation where manager
agents try to find neighboring contractors to complete their tasks. Then, contractors
bid (similarly to 3.2.2) on tasks based on available resources, and the manager
selects the best offer. However, if no contractor is found, the task is removed from
the system (leading to task failures). The authors have repeated the experiment
described in the article introducing GDAP for proper performance evaluation. In
this experiment there are two settings:
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Table 3.1: Experimental Settings for Small-World and Scale-Free
Networks

Net. Type Agents Tasks Res. Types Avg. Res/Task Avg. Neighbors

Small-World 40 20 5 30 Variable
Scale-Free 100–2000 5:3 ratio 20 100 Fixed (10)

In both of these settings, the algorithms have been evaluated according to two
criteria:

• Utility Ratio: percentage of tasks successfully allocated. The higher the per-
centage, the better the performance.

• Execution Time: the performing time of each algorithm in each network under
different situations. The lower the time, the better the performance.

The first experiment evaluates how the number of neighbors influences task allo-
cation performance. The proposed method TAP CQDL achieves the highest utility
ratio, reaching 1.2, significantly outperforming TAP at 0.6 and GDAP at 0.3. GDAP
struggles in scale-free networks due to its inability to reallocate tasks, whereas small-
world networks provide better results by facilitating more direct connections among
agents.

For all methods, the utility ratio improves as the number of neighbors increases,
demonstrating the effect of connectivity on task allocation efficiency. However, exe-
cution time remains relatively stable (±0.5ms), indicating that while more neighbors
enhance success rates, they do not significantly impact speed. GDAP is the fastest
due to its reliance on direct neighbors, whereas TAP CQDL incurs higher computa-
tional costs due to deep Q-learning and communication-based decision-making.

Table 3.2: Comparison of Utility Ratio and Execution Time in Set-
ting 1

Algorithm Utility Ratio (Best Case) Execution Time (Worst Case, ms)

TAP CDQL 1.2 7
TAP 0.6 5
GDAP 0.3 2

The second experiment examines the scalability of the approaches in networks
ranging from 100 to 2000 agents, simulating real-world applications such as large-
scale distributed systems or fleets of autonomous robots. TAP CQDL and TAP
maintain a high task success rate, though performance gradually declines as the
network size increases. TAP CQDL shows a decrease from 0.8 to 0.7, while TAP
drops from 0.6 to 0.5. In contrast, GDAP’s performance deteriorates significantly
going from 0.2 to 0.1. I assume it is due to its reliance on direct neighbors, making
it ineffective in large-scale networks.
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As expected, small-world networks perform better than scale-free networks, as
they offer higher connectivity per agent, facilitating task completion. In terms of ex-
ecution time, GDAP remains the fastest (2ms), while TAP CQDL and TAP displays
higher time complexity due to reinforcement learning techniques.

Table 3.3: Comparison of Utility Ratio and Execution Time in Set-
ting 2

Algorithm Utility Ratio (100 to 2000 Agents) Execution Time (ms)

TAP CDQL 0.8 → 0.7 7
TAP 0.6 → 0.5 5
GDAP 0.2 → 0.1 2

Overall, the results highlight the advantages of TAP CQDL in terms of efficiency
and adaptability, particularly in larger networks. However, this comes at the cost
of higher execution time, which remains a key factor to optimize in future work.

In conclusion, approach proposed by the authors achieves the highest task allo-
cation efficiency, but at the cost of longer execution time. The baseline GDAP is the
fastest but fails to allocate many tasks, especially in large networks as it considers
only direct neighbors. We also see that the new approach outperforms the former
one proposed by the authors showing the benefits of deep reinforcement learning
and communication-aware allocation. Finally, the impact of network topology is
significant: small-world networks are more favorable for task allocation than scale-
free networks. The authors showed that introducing deep Q-learning improves the
system performance by means of past task allocation performance at the cost of a
slightly more time consuming execution.

3.3.4 Conclusion on CTDE

In this section I have presented methods that illustrate that the CTDE paradigm
is a powerful framework for task allocation and load balancing in Multi-Agent Sys-
tems, combining global coordination during training with autonomous execution for
scalability in dynamic environments. The first approach, Centralized Learning Dis-
tributed Scheduling, presented at 3.3.1 employs centralized reinforcement learning
with a modular auctioneer role, ensuring robustness while maintaining good time
complexity, though it only achieves near-optimal policies in dynamic settings. On
another hand, the approach presented in Section 3.3.2 TAP CQDL enhances adapt-
ability by integrating DQN and communication-driven learning, enabling agents to
cooperatively allocate resources. It highlighted the benefit of communication in con-
trast to the conclusions that were drawn in decentralized methods in Section 3.2.2
at the cost of employing more advanced technologies making the execution time
slightly higher. Then again, what trade-off will the user take given the application



58 Chapter 3. Methods For Load-Balancing and Task Allocation in dynamic MAS

of the model ? All of these approaches demonstrate the Centralized Training, De-
centralized Execution paradigm’s effectiveness in balancing optimization, scalability,
and autonomy in MAS.



Chapter 4

Discussion

In this chapter we will orient our discussion on highlighting the key similarities
and differences between the presented methods and how a few elements of each
could constitute a good solution for load balancing and task assignment in multi-
agent systems. Each of these parts are either purely critical on the work I have
analyzed or supported by the authors of the articles. I will subsequently compare and
criticize each approach under a different angle, starting with algorithm complexity
and implementation complexity. I will then discuss the limitations of each methods
and how certain aspects of other methods can be a solution.

4.1 About Complexities

Task allocation methods in multi-agent systems exhibit a wide spectrum of com-
plexity. On the simpler end, centralized approaches like Fisher market-based and
auction-based methods offer conceptually straightforward solutions by leveraging
global optimization to achieve envy-free and Pareto-optimal allocations. Algorithms
such as FMC_TA [10] presented in Section 3.1.1 or CBBA [29] presented in Sec-
tion 3.2.2, have explicitly defined exhaustive rule-sets that need to be met otherwise
the system will not function properly. The action policies in themselves depend on
predefined actions with temporal and spatial constraints that need to be respected.
Alternatively the SCA algorithm in Section 3.1.2 [11] does not proceed to checking if
constraints are respected, it is less demanding on that aspect. This method employs
a heuristic method to explore the space of possible actions. The hill-climbing process
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helps find the best possible allocation. However, SCA does not take into account
temporal or spatial constraints. Without the predefined rule-sets it proposes a sim-
pler implementation than the centralized FMC_TA algorithm or the decentralized
CBBA algorithm, and the stochastic nature makes it more robust to unusual events
in the environment. The question is, which is the most suited for which application
? Is it preferable to have an algorithm that implements constraints at the cost of
specifying each of them ? Or is it better to have a simpler system that assumes no
constraints be met, straying from real life scenarios, but has a strong adaptability
to uncertain environment ? Either way, these methods do not use the "intelligence"
other methods use. Each agent does not keep track of its history. In a central-
ized setup each agent has global knowledge of the environment and they do not
communicate with each other. In addition to this, centralized methods often suffer
from scalability issues and the risk of a single point of failure. Although, one could
speculate that that the modular manager presented for the CLDS Algorithm [64]
in Section 3.3.1 could be implemented on a centralized system, where agents can
assume a role when a problem occurs.

In contrast, decentralized methods propose a more scalable, robust and dynamic
approach to load balancing or task allocation in MAS, at the cost of a much more
complex implementation. Either by the fact that the operations occur simultane-
ously. Or by the underlying concepts such as game theory-based methods presented
in Section 3.2.1, for example, that model inter-agent interactions as strategic games,
which allow for nuanced decision-making but increase computational complexity due
to the need to resolve Nash equilibria. Or the distributed optimization-based ap-
proaches like CBAA-CBBA (Section 3.2.2) whose determinism and dependence on
strictly defined environments and exhaustive rule-set is similar to the centralized
methods, the key difference is that agents share information that improves their de-
cision and it proposes single and multi-task assignment with a guarantee of at least
50% of the optimal solution.

From the underlying processes perspective, maybe the most complex approaches
and the ones that propose a real "intelligence" and potentially emerging behav-
iors from agent interactions, are the approaches relying on a reinforcement learning
framework. In the decentralized methods, although not specified by the authors
or explicitly stated in Section 3.2.2, the multi-agent multi-resource stochastic sys-
tem uses the reinforcement learning framework. The RL framework is illustrated
by the use of dynamic parameters that are updated over time. The exploration /
exploitation factor as well as the learning rate, or the discount for rewards are all
parameters in the RL framework. The paper presented by Schaerf et al. [36] also
illustrates the complexity of RL with the conclusions they draw. In fact, using the
most efficient resource over the other ones is said to be a poor policy by the authors.
Which makes sense, when fully exploiting a resource, other resources are underused
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or neglected, and the system finds itself in a local minima. The authors also draw the
conclusion that adaptive selection rules are the best, validating my assumption that
approaches where system parameters and agent information are updated over time
and improved with previous iterations are better than the static ones. The method
that, in my opinion, brings a very interesting contribution is the one presented at
Section 3.3.1, where a central manager can be replaced during training by any other
scheduler agent assuming the new role. This mechanism could be implemented on
various other systems.

Pushing complexity even further may come with a computing cost, but with the
improvement of GPU accelerated computing or faster CPUs, methods like Multi-
Agent Deep Reinforcement Learning presented at Section 3.3.2 propose a communi-
cation system augmented with a neural architecture: CommNet. While leveraging
complex concepts, this approach has shown that a previous statement stated by
Schaerf et al. [36] saying that communication among agents might not be fully
beneficial was, in fact, not right. This complex system architecture is able to ag-
gregate the information of surroundings neighbors with an awareness brought by
the back-propagation mechanism to understand the agents condition in the current
state. In the experiments, the authors show that the novel, more complex method
has a slightly higher time of execution that can be neglected at the scale at which it
was tested for real-time decision making compared to its faster, but less developed
competitors.

We can summarize these reflections saying that this contrast in complexity high-
lights a key trade-off: simpler algorithms benefit from speed and reduced overhead,
whereas complex, learning-based approaches, despite their higher computational
cost, can better tackle the challenges of task allocation and load balancing in un-
predictable, real-world settings.

4.2 About Limitations

As stated in Section 2.5, the approaches presented in this work are able to solve or
handle few challenges among so many other. In the design of MAS, selecting the
appropriate methods involves considering and weighting trade-offs between optimal-
ity, scalability, adaptability, and communication overhead. The approaches we have
presented so far carries inherently limitations that not only restrict their individual
performance but also affect how these strategies might be combined or extended in
more complex environments.

Centralized approaches provide a global view and control over the environments
which can be used to compute envy-free and Pareto optimal task assignments (e.g.,
via the FMC_TA or SCA Algorithms). However these methods struggle with scal-
ability because a single controller must process information from every agent, which



62 Chapter 4. Discussion

potentially hold information that also need to be aggregated. This creates compu-
tational bottlenecks as the amount of information carried and the number of agents
grows. In addition to this, centralized approaches suffer from the single-point-of-
failure, making the system vulnerable to a lot of external factors hardware-wise or
software-wise. The solution to scalability would be to utilize the local aspect of
decentralized approaches. In fact each agent would only need to aggregate a few
information from its neighbors with its own (e.g., the CBBA algorithm allows the
agent to iteratively understand the global view of the system by sharing a winning
bid list). Whereas the single-point-of-failure could be solved with the CLDS ap-
proach, where the general manager can be replaced at any time by any other agent
if it fails. Such improvement would open up a lot of application to centralized ap-
proaches, but then, would they be called centralized if any agent can assume the role
of global manager, and would their decisions be impacted by their former experience
as a scheduler or the information they gathered at a given point in the execution ?
This role changing system can also be a solution for communication overhead lim-
itations. If we assume that regularly in time the central manager is changed with
an agent that has a lot of neighbors, the information of all agents wouldn’t have
to be relayed to the central manager since the agent assuming the role has already
aggregated the information of it’s neighbors, thus gaining time and computational
power ? This would be a modular approach to centralized methods worth exploring.

On the other hand, decentralized methods enhance the system robustness by
distributing decision-making among agents, eliminating strictly the single-point-of-
failure issue. However, the lack of central coordination means that agent base them-
selves solely on local observations. Given how the system is defined, this limited view
can lead to local minima and suboptimal global outcomes. And this is specifically
the case when agents pursue individual objectives, what is the global benefit when
the only benefit they know is their own ? The other issue about decentralized ap-
proaches is that each agent must evolve with a non stationary environment. That is,
an environment that is modified due to the actions of the other agents. A dynamic
environment makes it challenging to achieve stable convergence during learning and
can result in unpredictable behavior. To solve this issue, communication among the
agents is used to approximate the environment via an aggregation of the local obser-
vations (e.g., CBBA, MAMRSS), or heuristics are used to explore the action space
stochastically and improve over time (e.g., DSA). In order to improve decentralized
methods, research should be made on how agents can cooperate with each other
and which piece of information they should be sharing with one another. One can
imagine a system where agents are of different nature with a global role at the be-
ginning and according to what local observation the agent perceives, it can assume
a specific role (explorer, exploiter, messenger etc.) ? An interesting piece of work
was provided by Suarez et al. on agent interaction and cooperation/competition in
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MAS [69].
Finally the approaches that make use of the CTDE paradigm who leverage

the advantages of both centralized and decentralized methods face what is called
a training-execution mismatch. That is, the mismatch between global information
used during training to learn a coordination among agents, and the information that
are used in a local way during the execution. This can particularly happen when the
training environment does not capture the complexity and dynamics of the opera-
tional setting. They remain, however, the most used and developed techniques as it
tackles multiple limitations at once. The cost at which they come is on two sides;
the first being the computational cost mentioned in the previous section, the second
is the fact that they rely on techniques employing deep learning (e.g., CQDL) and
that for any application using deep learning, tuning and overfitting is a major issue.
This can have an important effect on the decisions the agent make on unforeseen or
rapidly changing real-world scenarios. For CQDL we could imagine an improvement
of attention-based graph networks to estimate the environment and surroundings of
each of our networks and also estimate the implicit interactions an agent can have
with another by interacting with a resource or a task its neighbor has seen before.

Overall, our critical analysis displays that no single approach is universally su-
perior. And while the ones using CTDE are the most promising, each method
embodies trade-offs that must be balanced according to the specific requirements of
the application domain. We have summarized our understandings in a comparative
table in Appendix 7.





Chapter 5

Conclusion

The aim of this work was to present various approaches that solve task allocation
and load balancing in multi-agent systems. First we proposed a review of the un-
derlying theory behind the approaches we presented, citing the foundational work
of distributed artificial intelligence and how software agents are defined. Then we
detailed what a multi-agent system is and specified the Markov decision process
framework and its variations to reinforcement learning for the single agent frame-
work, as well as multi-agent reinforcement learning for multiple agents After that we
proposed a formal definition of the two problems our work is about : task allocation
and load balancing in MAS. We then presented the major challenges the community
was facing when trying to solve the problems of load balancing and task allocation
by illustrating existing methods and their impact. Finally we briefly detailed how
these algorithms were evaluated in a multi-agent setup.

In chapter 3, we have chosen to present the existing methods under 3 panels.
The centralized methods, the decentralized methods, and the centralized-training
decentralized-execution paradigm. Throughout the analysis of these methods we
have highlighted their limitations, advantages, and hinted how they could be com-
plementary with one another. The aim was to make each approach as clear as pos-
sible for the reader to understand the underlying processes behind game-theoretic
based approaches or distributed optimization approach for example. Throughout
our work, the approaches have gained in complexity, ranging from a simple, deter-
ministic Fisher Market-based approach to a multi-agent deep reinforcement learning
with communication capabilities approach.
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Finally, in chapter 4, we have put all these methods in parallel and have dis-
cussed their complexity and limitations by comparing them, being critical on the
way they were built, and proposing questions for further research. We have drawn
the conclusion that each of the presented methods contribute to advancing the field
of load balancing and task allocation in MAS by tackling one or multiple challenged
wether it is being scalable, optimal, failure-proof, or communication enhanced. The
research in multi-agent systems is very active and there is still much to be done to
improve performance and find methods that are applicable to real-life scenarios.
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Appendix A: CLDS Algorithm
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Algorithm 5 Task Allocation using Cooperative Deep Q-Learning (TAP CDQL)
Require: Task tMn, Manager Agent AMn, Maximum retries Nmax

if AMn cannot complete tMn then
Broadcast ResAnnounceMess ⟨AMn.ID, tMn.ID, tMn.required_res⟩ to

neighbors
Collect responses from neighboring agents
for each Agent Aj in responses do

if Aj .state = Idle then
Send ProposeMess ⟨Aj .ID, Aj .res, Aj .exec_time, Aj .util, Q(Aj)⟩ to

AMn

else
Send RefuseMess ⟨Aj .ID⟩ to AMn

end if
end for
Initialize selected_agent← None, best_util← −∞
for each response in responses do

if response.utility > best_utility then
selected_agent← response.agent
best_util← response.util

else if response.util = best_util∧response.exec_time<selected_agent.exec_time
then

selected_agent← response.agent
end if

end for
if selected_agent ̸= None then

Send Contract ⟨AMn.ID, selected_agent.ID, tMn.ID, selected_agent.res⟩
Set selected_agent.state← Busy

else
AMd ← select_mediator(AMn.neighbors)
if AMd ̸= None then

Send Commitment ⟨AMn.ID, AMd.ID, tMn.ID, tMn.remaining_res⟩
Set AMd.state← Committed
Call TAP_CDQL(tMn, AMd) ▷ Recursive call for reallocation

else
Revert all allocations
return "Task Allocation Failed"

end if
end if

end if
return "Task Successfully Allocated"
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