3DMASC : Objective Evaluation on Benchmarked Urban Environment LiDAR Data

Pierre Lague

Université de Technologie de Compiègne / Observatoire des Sciences de l'Univers de Rennes

Oral Defense

<□▶ <四▶ < 注▶ < 注▶ < 注▶ = 注

590

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

3

Table of Contents

Introduction

- Context of the project
- The Hessigheim 3D Dataset

2 Methodology

- First Approach : no context cloud and optimization
- Second Approach : building a context cloud
- Third Approach : context cloud and feature/scales optimization
- 3 Results on Hessigheim 3D

4 Discussion

5 Conclusion

Context of the project

 3DMASC and Feature Optimization routine : main subject of Mathilde Letard's thesis.

Objective 1:

Training and testing 3DMASC on CloudCompare and Python

Objective 2:

Objective Evaluation of 3DMASC on Urban Environment

イロト イ押ト イヨト イヨト

Understanding 3DMASC

3DMASC : 3D Point Cloud Classification framework, Multiple Attributes, Multiple Scales and Multiple Clouds (Letard et al. 2023, sub).

- Supervised machine learning model using a random forest classifier.
- Achieved significant scores on topo-bathymetric LiDAR data (>0.95 OA).
- Stands out for its compactness and explainability.

Remark

3DMASC is available with a GUI on CloudCompare (Giradeau-Montault, 2011) and in command line in Python.

イロト イ押ト イヨト イヨト

3DMASC Clouds and Features

Uses classical features used in 3D point cloud classification (point-based features, contextual features) + new dual-cloud features.

- PC1 and PC2, both characterizing the scene of interest at two different times.
- **2** PCX : core points (subset of PC1). Classified cloud.
- OCTX : context cloud, spatial and contextual information. Lower resolution than PC1.

Eg. Point-based features

- Intensity : the return strength of a laser beam (insight on the nature of the surface)
- Echo Ratio : measure for local transparency and roughness (Return Number / Number of Returns)

Eg. Context-based features

- DZ to KNN : Mean vertical distance to k nearest neighbor
- DH to KNN : Mean horizontal distance to k nearest neighbor

イロト イヨト イヨト

*ロト *部ト * ヨト * ヨ

Figure 1: Hessigheim 3D Dataset : PC1, PCX (subset of PC1) and CTX clouds

500

CMI Internship 2021-2022 7/28

Internship Oral Defense

(日)

The Hessigheim 3D Dataset

Figure 2: Partition of the H3D(PC) dataset (epoch March 2018) into training (colored by class colors), validation (colored by class colors and marked by yellow box) and test set (grey).

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨ の ()

Table of Contents

Introduction

- Context of the project
- The Hessigheim 3D Dataset

2 Methodology

- First Approach : no context cloud and optimization
- Second Approach : building a context cloud
- Third Approach : context cloud and feature/scales optimization

3 Results on Hessigheim 3D

4 Discussion

5 Conclusion

First Approach : no context cloud and optimization

Figure 3: First Approach : Confusion Matrix. Predictor composed of classic 3D point cloud classification features.

Pierre Lague (UTC, OSUR)

< 口 > < 🗗

Conclusion on First Approach

- Miss-classification of ground related classes and under-represented classes.
- Ø Model cannot contextualize objects and surroundings.
- The model is penalized by some features or scales.

Hence the use of a CTX cloud with 3DMASC

Second Approach : building a context cloud

The CTX cloud is composed of labelled 3 classes Roof (class 4), Ground (class 0, 1, 8) and Others. The classifier is trained on:

Figure 4: On the left, PC1. On the right, PCX, mapping of the roofs and ground via rasterization.

CMI Internship 2021-2022 12/28

Internship Oral Defense

Making the CTX cloud "reliable"

Figure 5: Confusion matrix of the CTX classifier. OA : 0.95

Thresholding the CTX will allow us to keep the most "confident" predictions.

Figure 6: On the left : CTX cloud with no threshold. On the right : CTX cloud with 70% confidence threshold.

Remark

Balance between confidence and amount of data discarded. Here, each point has at least 70% of classification confidence and still 85% of the data is available.

Sac

Third Approach : context cloud and feature/scales optimization

Important to select the features that are positively contributing to the model. Features selected according to their :

- Information Gain and Pearson Coefficient -> Correlation selection. (automatic in Python)
- Feature Importance (manual in CloudCompare)

Lightweight optimized model

Figure 7: OA vs Number of Features / Number of Scales. Nb Features : 35, Nb Scales : 6

Pierre Lague (UTC, OSUR)

Third Approach : context cloud and feature/scales optimization

Optimized Model

Low Vegetation	2114	224	6	64	1	26	88	15	165	28	0		
Impervious Surface	302	2325	6	41	3	51	18	1	68	23	0		- 2500
Vehicle	5	14	2798	18	0	17	19	3	0	2	0		
Urban Furniture	79	66	44	2006	37	175	280	28	12	52	5		- 2000
Roof	0	0	0	12	2732	47	3	5	0	1	21		
Facade	25	77	15	129	65	2318	53	2	0	10	15		- 1500
Shrub	93	33	33	252	18	80	2082	115	14	43	0		
Tree	63	0	5	39	6	25	196	2557	2	15	3		- 1000
Soil/Gravel	99	39	0	28	0	11	20	0	2642	0	0		
Vertical Surface	6	30	2	15	0	26	39	2	2	2592	0		- 500
Chimney	0	0	0	0	8	4	0	0	0	0	2802		
	getation	Surface	Vehicle	-urniture	Roof	Facade	Shrub	Tree	il/Gravel	Surface	Chimney		- 0
	F	igure	8: O	ptimiz	ed M	odel :	conf	usion	matr	x		≞ ⊾	= 4

Pierre Lague (UTC, OSUR)

Methodology

Third Approach : context cloud and feature/scales optimization

 Most Important features stand out as being contextual (most important), multi-echo and geometry-based (minority) features.

Contextual Features, mean IG ≈ 0.0562 DZ_PCX_CTX_11@KNN = 3, DZ_PCX_CTX_11@KNN = 1, ...

Multi-Echo Features, mean IG ≈ 0.0452

EchoRat_PC1_MEAN@4, Number_Of_Returns_PC1_MEAN@4, EchoRat_PC1_MEAN@2, Number_Of_Returns_PC1_MEAN@2 Geometric Features, mean IG ≈ 0.0314

PCA3_PC1@1.5, Dip_PC1@4

< □ ▶ < @ ▶

Third Approach : context cloud and feature/scales optimization

Conclusion on third approach

- The model is able to achieve decent scores with few features and few data.
- The ground-related classes and under-represented classes are still miss-classified.
- The contextual features and feature selection routine highly improves the model.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

3

SQA

Table of Contents

Introduction

- Context of the project
- The Hessigheim 3D Dataset

2 Methodology

- First Approach : no context cloud and optimization
- Second Approach : building a context cloud
- Third Approach : context cloud and feature/scales optimization

3 Results on Hessigheim 3D

Discussion

5 Conclusion

Figure 9: Classification of the Benchmarked Dataset. On the right : classified point cloud. On the left : classification confidence

- Confidence shows that the model has difficulties classifying ground-related classes.
- Important structures (houses, trees) are well classified thanks to contextual features.

Pierre Lague (UTC, OSUR)

Э

SQC

Confusion matrix of Letard230213

Figure 10: Confusion matrix of the inference. The matrix was computed by the IFP institute. OA : 66%

Table of Contents

Introduction

- Context of the project
- The Hessigheim 3D Dataset

2 Methodology

- First Approach : no context cloud and optimization
- Second Approach : building a context cloud
- Third Approach : context cloud and feature/scales optimization

3 Results on Hessigheim 3D

Discussion

5 Conclusion

Internship Oral Defense

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

= 900

Number of Samples and Intensity Feature

Figure 11: Classification on an extract of the benchmark dataset. Left : model trained on 7 000 samples per class. Right : model trained on 30 000 samples per class with Intensity feature.

イロト イボト イヨト イヨト

Э

SQA

Labelling

Figure 12: Label inconsistencies in the dataset may have biased the model. Left is class "Low Vegetation". Right is class "Soil/Gravel"

Comparison to Benchmark Competition

- Our model did not perform well in terms of OA (13th out of 15), but still more compact and explainable than DL methods.
- IFPs RF algorithm is the best model on the benchmark but very poorly documented. (features, context cloud, number of samples).
- Previous discussion shows that Intensity feature and number of samples can improve the model (up to 92% OA for the training phase)

Internship Oral Defense

Э

SQA

Table of Contents

Introduction

- Context of the project
- The Hessigheim 3D Dataset

2 Methodology

- First Approach : no context cloud and optimization
- Second Approach : building a context cloud
- Third Approach : context cloud and feature/scales optimization
- 3 Results on Hessigheim 3D

Discussion

5 Conclusion

Internship Oral Defense

Conclusion of the Study

 Newly introduced model 3DMASC stands out for its explainability and compactness.

The number of samples for the model is important when training on complex environments.

Ш

Feature Selection protocol doesn't take into consideration inherent usefulness of a feature in a given environment (eg. Intensity)

Ш

Contextual features -> spatially contextualize objects. Neighbourhood-based features -> grasp the nature of surfaces/shapes. Both contributing to making the model more discriminant.

イロト イポト イヨト イヨト

3

Thank you for your time

