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Abstract

This report presents the work undertaken during a 1 month internship with the "Plateforme LiDAR" team at the
"Observatoire des Sciences de l’Univers de Rennes" (OSUR) under the supervision of Mathilde Letard and Paul
Leroy. The goal was toCompare a recently developped machine learning algorithm based on classical shallow
learning approaches (random forests and handcrafted features), called 3DMASC, to state-of-the-art deep
learning methods on bench marked datasets for the classification of 3D Point Cloud Data. The objectives for
this internship are to evaluate 3DMASC on a benchmarked dataset and submit our results to assess the performances
of 3DMASC and compare it to other methods. In addition to this, the objective is to present and return scientific
results and experiments according to standard redaction of a report.

The work will first present a state-of-the-art in 3D point clouds classification and benchmarked dataset of 3D
point clouds. Then, the data engineering process on the training and validation sets, a methodology based on 3
approaches. Following, the description of the optimization routine improving the models performances, deploying
the model on the benchmarked dataset and submitting our results, and discussing the results. Finally, concluding
on the experimentation and opportunities 3DMASC represents.

Our results show that 3DMASC has the capability to compete with state-of-the-art deep-learning methods in terms
of compactness and interpretability, but that it performed poorly because of reasons related to feature optimization
and data engineering.

This internship represented a very good opportunity for me to take part into a scientific project related to artificial
intelligence during the semester break. It proved itself very instructive and allowed me to manipulate algorithms
related to classification and objective evaluation.

Keywords: LiDAR, Machine Learning, 3D Data, state-of-the-art, Multi-scale classification, Multi-cloud classifi-
cation, Random Forests
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1 Presentation of the Laboratory

1.1 The OSUR

The Observatoire des Sciences de l’Univers de Rennes (OSUR) is a public laboratory afiiliated to the
University of Rennes, the CNRS and the University of Rennes 2(Bretagne). It has four main missions: i)
environmental observation, ii) sharing of analytical and technicalmeans, iii) animation of interdisciplinary
research and iv) training at undergraduate and graduate level. OSUR is a Research and Support Unit
between the University of Rennes, the University of Rennes 2, CNRS (INSU), INRAE and Institut Agro
AGROCAMPUS OUEST.

1.2 The "Plateforme LiDAR"

The "Plateforme LiDAR" is a research and development structure of the OSUR. It designs methods to
exploit massive 3D data (classification, segmentation, change detection, etc.) from airborne or ground-
based LiDAR sensors in relation to various scientific challenges in environmental sciences: natural
hazards (landslides, floods, ...), environmental monitoring (soil erosion, geomorphological analysis ...).
They ensure the dissemination of these methods, in particular through the Cloudcompare software and the
training of users. They have a terrestrial LiDAR and an airborne topo-bathymetric lidar sensor, unique
in France, allowing simultaneous 3D measurement of topography, vegetation and shallow submerged
surfaces.

Following more than 10 years of development in 3D data processing at OSUR and in hyperspectral data
processing at OSUNA, the platform was created in collaboration between the Universities of Rennes
1 and Nantes, which acquired in 2015, the first topo-bathymetric LiDAR in France: an Optech Titan
DualWavelength.

The LiDAR platform is specialized in LiDAR topo-bathymetric acquisition in a river context: geomor-
phological/hydrological expertise, feasibility study of lidar acquisitions and flight plans. The platform
has developed its own tools for processing river topo-bathymetric LiDAR data and their applications:
soil/water classification, refraction correction, exploitation of the full wave return, couplingwith hydraulic
simulations. The platform is also developing numerous algorithms for the exploitation of 3D time series
to automatically extract changes of very low amplitude (< 1 cm in terrestrial lidar, < 10 cm in airborne
lidar) such as 3DMASC.

1.3 The workspace and team

My two tutors Paul Leroy and Mathile Letard are both from the "Plateforme LiDAR" and actively
contribute to the on-going project that is 3DMASC (presented later) and its evaluation. Mr Leroy is a
CNRS research engineer and is working on the implementation and optimization of the 3DMASC plugin
for CloudCompare in C++. Mrs Letard is a second year PhD student working on the implementation
of the underlying algorithm for 3DMASC and the optimized feature selection in python. During the
internship, the scripts used for feature optimization come from the "plateforme_lidar" repository on git.

2 Introduction

2.1 Context

We are recently witnessing an increasing availability of not-interpreted point clouds (Fig. 1) and 3D
models, often shared online using point-based rendering solutions (e.g. CloudCompare, PoTree). A Point
Cloud (PC) is a set of 3D points in which each element is a vector of coordinates (x,y,z) with associated
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Figure 1 – Illustration of 3D Point cloud segmentation following the road slope. Ground points are green,
obstacles are pink.

point based features : intensity, multi-echo characteristics, RGB color. If we focus on point clouds,
there is a growing need of innovative methods for the treatment and analysis of these data and for their
classification in order to fully harness their informative value. 3D point clouds are the simplest but at the
same time powerful collection of elementary geometrical primitives able to represent shape, size, position
and orientation of objects in space. This information may be enhanced with additional contents obtained
from other sensors or sources, such as colours, multispectral or thermal information, etc. For a successful
exploitation of point clouds and to better understand them, we must first proceed with segmentation and
classification procedures. The former refers to a group of points in subsets (normally called segments,
Fig. 1) characterized by having one or more characteristics in common (geometric, in a neighbourhood
etc.) whereas classification means the definition and assignment of points to specific classes (“labels”)
according to different criteria.

The complexity and variety of point clouds caused by varying density, irregular sampling and different
types of objects, etc., has led point cloud classification and segmentation to become very active research
topics (Zhang et al. 2018 proposing a Graph-CNNmodel for 3D point cloud classification, Liu et al. 2021
proposing a robust model resisting to malicious input or data modification). Multiple research studies
related to these two topics, are driven by specific needs provided by the field of application (robotics,
autonomous driving, underground mapping, etc.).

Many algorithms require a fine-tuning of different parameters depending upon the nature of data and
applications. Supervised methods are the most common. They require a mandatory training phase,
necessary to guide the successive machine learning classification solution. The results are generally
affected by noise and density of the cloud as well as by the quality of the training data (labelling
approximation and class choice). Different benchmarks were proposed in the research community,
the most comprehensive study being carried out by the previous ISPRS Working Group III/3 “3D
Reconstruction from Airborne Laser Scanner and InSAR Data”’ with the aim to segment and classify
points in bare earth and object classes (Sithole and Vosselman, 2003; Sithole and Vosselman, 2004).
The study was initiated to compare the performance of various automatic filters with the purpose of (i)
determining the comparative performance of existing filters, (ii) understanding the influence of point
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density on the filter performance and (iii) identifying directions for future research on point clouds
filtering algorithms. A more recent benchmark is the “Semantic Kitti : A Dataset for Semantic Scene
Understanding using LiDAR Sequences" (http://www.semantic-kitti.org/) that provides a sequence of
labelled terrestrial 3D point cloud data (urban environment) on which people can test and validate their
algorithms (Fig. 1).

However, many of these algorithms and methods remain out of reach to most people due to their difficulty
to be explained, interpreted and undertaken. In this report, we will compare a newly developed algorithm
(3DMASC, 3D Multiple Attributes, Scales, and Clouds) to the state-of-the-art methods used to classify
3D Data of urban environments. 3DMASC has proven itself very performant in natural environments

Figure 2 – Example of a classified point cloud from Semantic Kitti Dataset
(https://www.youtube.com/watch?v=3qNOXvkpK4I)

2.2 3DMASC

3DMASC is a framework for 3D points classification with Multiple Attributes, Multiple Scales and
Multiple Clouds (Letard et al. 2023, sub). It is a supervised approach using handcrafted features and a
random forest algorithm. So far it has been applied to coastal and fluvial TB (Topo-Bathymetric) airborne
lidar datasets. It combines proven classical elements of single point cloud semantic classification, such as
geometric feature extraction from multi-scale spherical neighborhoods or k-nearest neighbors (Thomas
et al., 2018) and a random forest machine learner (Breiman, 2001). It’s contribution consist in :
— 3DMASC can use 2 different point clouds (different wave length clouds or two successive clouds)
allowing it to compute different features based on the joint-cloud local geometry.

— Screening and selecting features and scales truly contributing to 3D semantic point classification
in order to develop an optimal classifier (efficiency, capability and interpretability).

— Using limited data (<2000 points per class), it is able to achieve significant score on TB lidar
datasets (OA (overall accuracy) >0.95 Fig. ??).

We will try to evaluate 3DMASC on bench-marked datasets such as Hessigheim 3D, SimKITTI64, the
simulated version of SemanticKitti (Fig. 1) (see Additional Work section). The goal is to show that
3DMASC can generalize itself to other environments than natural environment where it was developped
(urban environments) and is at least as efficient as the state-of-the-art deep learning methods. 3DMASC
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Figure 3 – Classified point cloud by 3DMASC of the "Cap Frehel" region of study.

is available as a plugin in CloudCompare and was also implemented in Python. CloudCompare (Daniel
Giradeau-Montault, 2011, see Appendix B), is an open source 3D point cloud (and triangular mesh)
editing and processing software and is one of the most used tool in the environmental science community
using 3D point clouds.

3 Related Work

The progress of computer vision has always been driven by the development of new algorithms and
bench-marked datasets to test them on. Even in 2D, milestones such as the availability of the large-scale
image dataset ImageNet was crucial for deep learning to develop itself. Regarding the application in
which a study is made, task-specific datasets appeared such as Citiscapes dataset (Cordts et al. 2016),
which is the first dataset for self driving cars providing a considerable amount of pixel-wise labelled
images. And for generalized models, the Mapillary Vistas dataset (Neuhold et al. 2017) provides the
amount and the diversity that Cityscapes could not. However, regarding 3D point-based labelled datasets,
the development of technologies such as LiDAR (Li et al., 2020) has made it possible for researchers to
build considerable datasets, providing a variety of classes and samples in different environments.

3.1 Benchmarked Datasets

For this internship, we have chosen the Hessigheim 3D (Kölle et al., 2021) benchmark as an example of
airborne LiDAR data. It was easy to get the data and submit our results to compare our results. THe
Heissgheim 3D data provides :
— UAV-based (aerial scene) simultaneous data collection of both LiDAR data and imagery from the
same platform.

— High density LiDAR data of 800 points/m2 enriched by RGB colors of on board cameras incor-
porating a GSD of 2-3 cm.

— Manually set labels for the LiDAR point cloud with 11 classes.
We also aimed at using the SimKItti64 (Richa et al. 2022) datasets as it is obtained from a mobile vehicle
and typically pertains to challenges related to autonomous vehicle. It proposes :
— A dataset created simulating a Velodyne HDL-32 (terrestrial scene) inside a scene modeled from
the SemanticKITTI (Behley et al., 2021) dataset (acquired using a Velodyne HDL-64).

— Sequence labelled point clouds recorded at a rate of 10Hz. Enables the use of temporal information
and aggregation of information on mulitple-cloud analysis.

— Moving and non-moving objects are annotated with distinct classes (cars, trucks, pedestrians and
bicyclists), a total of 34 classes.

Both of these datasets allowed multiple methods to be developed and tested on.
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3.2 Classification on Point Clouds

Attempts to classifying point clouds were developed by adapting ideas from deep learning on images,
e.g., using multiple view images (Hang Su et al. 2015, Tan Yu et al. 2018), or applying convolutions
on 3D voxel grids (Zhirong Wu et al. 2015, Maturana et al. 2015). Then, appeared the transfert of
convolution operations from 2D to 3D, it is shown that performing convolutions on a point cloud is not
an easy task (Manzil Zaheer et al. 2017). The difficulty comes from the fact that a point cloud has no
order of points on which convolutions can be performed. Alternatively, some other methods proposed to
learn local features from convolutions, e.g., (Qi et al. 2016, Li et al. 2018, Hua et al. 2018, Dominguez
et al.) or from autoencoders (Yang et al. 2018). It is also possible to treat point clouds and views as
sequences (Han et al. 2018, 2019), or to use unsupervised learning. Recent works demonstrate very
competitive and compelling performances on standard datasets. For example, the gap between state-of-
the-art methods such as SpecGCN (Wang et al. 2018), SpiderCNN (Xu et al. 2018), DGCNN (Yang et
al. 2018), PointCNN (Li et al. 2018) is less than ModelNet40 dataset (Wu et al. 2015). In the online
leaderboard maintained by the authors of ModelNet40, the accuracy of the object classification task is
reaching perfection, with 92% for point cloud methods (Li, WangXu et al. 2018). Notorious methods
such as SPGraph (Landrieu et al., 2018) are tackling problems related to the large scale of the data and
the lack of clear structure in the point clouds. KPConv (Thomas et al., 2019) is very efficient in 3D
Convolution, being the first algorithm to propose a flexible and variant convolution kernel for 3D points
achieving significant scores and tackling problems linked to complex structures classification. And finally
PointNet++ (Qi et al., 2017).

4 Methodology

In this section we will describe the methodology we used to evaluate 3DMASC and engineer the
different benchmark datasets. We will provide details of procedure and convention to use 3DMASC in
CloudCompare and in Python (see Appendix A for a functional representation of the methodology). The
study proposes 3 different approaches : the first one is without a context cloud, it allows us to see how
the model performs from its basic configuration. The second approach is with a context cloud (needing
to build a model capable of creating a context), allowing us to assess the contribution of context-based
features. This second approach will end by generating a context cloud which will be filtered according to
the classification confidence in order to keep only high confidence classified points, making the context
cloud reliable. Finally, the third approach is with a context cloud and feature optimization to have the
final model for the test inference.

4.1 Computing Features and Scales

The underlying algorithm of the 3DMASC plugin takes a 3D point cloud as input. After the inference,
it produces a classified cloud. In addition to point-based features, 3DMASC computes neighbourhood-
based features defined by a spherical neighbourhood or KNN search. 4 different entities can be involved
in the extraction of these features :

— 1-2) two point clouds. The originality of 3DMASC lies in using up to two PCs to characterize the
scene of interest. For urban environment classification applications, they originate from different
sequences of clouds. We refer to them as PC1 and PC2, respectively. For this study, only 1 cloud
will be used (PC1) on the Hessigheim 3D dataset.

— 3) A set of core points, denoted PCX, that 3DMASC classifies at the end of the process. Usually
a subset (regular subsampling) of PC1 or PC2.

— 4) An optional context PC, denoted CTX. Contains spatial and contextual information, at a much
lower resolution than PC1 or PC2. A typical CTX would be previously classified ground points
at 2 m spatial resolution.
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Additionally, the features are all specified in a parameter file following a particular syntax. Features of
geometric, contextual, intensity and color nature can be specified and later used (or not) in the model. As
previously mentioned, the neighbourhood-based features are computed according to a certain scale (eg.
0.5, 1, 1.5, 4). A scale is defined as the sphere diameter of the spherical neighbourhood. 3DMASC uses a
multi-scale classifier computing multiple neighborhoods for each core point. The computed features are
used in the random forest classifier to predict a label for each point of the input PC, using the predictor
vector used to describe the many aspects of 3D objects. At the end of the training phase, the plugin
provides metrics on feature importance and model performance on the validation set.

4.2 Hessigheim 3D Dataset

The benchmark datasets all differ from one another by their data format, the way they are organized, the
way they were labelled and other caracteristics. We decided to visualize them first and try to understand
how they were arranged using CloudCompare.

The first benchmarked dataset studied was Hessigheim 3D (Kölle et al., 2021) proposing 3 point clouds
organized according to Fig. 4 :
— A training set ( 79 Million points).
— A validation set ( 19 Million points).
— A test set ( 51 Million points).

Figure 4 – Partition of the H3D(PC) dataset (epoch March 2018) into training (colored by class colors),
validation (colored by class colors and marked by yellow box) and test set (grey).

The dataset is composed of 11 un-balanced classes : Low Vegetation, Impervious Surface, Vehicle,
Urban Furniture, Roof, Facade, Shrub, Tree, Soil/Gravel, Vertical Surface and Chimney (numbered from
0 to 11). We spotted some inconsistencies in the labelling, especially for the classes related to the groud
(approximate labelling of low vegetation and miss-labelling of ground volumes). Because the data is
very dense, the first step was to subsample the clouds to limit the inference and computing time. We’ve
balanced the classes to 7000 samples per class in the training and validation set. The 3DMASC plugin in
CloudCompare provided the first results and gave an estimation of the relevant features and scales.

4.2.1 First Approach : no context clouds

Initial tests on the training and validation sets returned OA scores around 0.7. During those tests, no
context clouds were used. The confusion matrix (Fig. 5) extracted from the training session in Table
1. shows that ground-related classes like Impervious Surfaces (class 1), Low Vegetation (class 0) and
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Class Precision Recall F1-Score
Low Vegetation 0.54 0.66 0.6
Impervious Surface 0.68 0.69 0.69
Urban Furniture 0.68 0.67 0.67
Roof 0.4 0.53 0.46
Facade 0.87 0.87 0.87
Shrub 0.6 0.76 0.67
Tree 0.68 0.55 0.61
Soil/Gravel 0.84 0.85 0.84
Vertical Surface 0.66 0.41 0.51
Chimney 0.9 0.79 0.84
Vehicle 0.94 0.85 0.89

Table 1 – First test : 7000 points per class, no context cloud. OA : 0.69

Soil/Gravel (class 8) are miss classified and lead to a less robust and discriminant model. The "urban
furniture" class is also miss classified due to it’s spatial position and density (few points per objects and
few objects in the scene). These problems can be solved by making our model more discriminant between
spatially close classes. Hence the use of a context point cloud.

Figure 5 – Confusion Matrix from first test (Table 1). It shows that ground-related classes are miss
classified. Other spatially independent classes like the chimneys (class 10) are very well classified.

4.2.2 Second Approach : generating the context cloud

To build a context cloud we decided to implement a "3-class" strategy. The cloud will be composed of
3 classes : Roof (class 4), Ground (class 0, 1, 8), Others. We first operated with a "known" context,
meaning we built CTX from the labelled data. We later trained a model to build a context cloud from
a rasterized sumbsampled cloud (0.5cm rasterization, 10 cm spatial subsampling). The rasterization
(scening) was done according to the Z axis (less effective than a Numerical Terrain Mapping), retrieving
the lowest point in a regular grid of 0.5 by 0.5 m, leading to a mapping of the roofs, the grounds and
other horizontal surfaces (Fig. 6). The subsampling reduced the number of points for practical reasons.
To favor the generalization of the model we decided to combine the training and validation set (Fig 4.) in
order to have a more diverse dataset. We used 20% and 80% of the dataset for the validation phase and
the training phase respectively.

After going through the inference phase, our context cloud was generated. Being a context cloud it needs
to be reliable, as a result, we set a confidence threshold on the cloud in a way that the context cloud has
enough points to be useful( 189 955 points) and the classified points are reliable (70% confidence). This
way we were able to :
— Build a 3 class model able to generate a CTX cloud for our training/validation and benchmark
dataset.

— A context cloud on which important features will be computed in order for our model to better
contextualize classes and their surroundings.
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Figure 6 – On the left, the rasterized sample (PCX cloud for the CTX classifier). On the right, the
subsampled version of PC1 for the training sessions.

4.2.3 Third Approach : Optimized features and scales + context cloud

The possible number of features with our setup is over 200. Each of these features having their own
contribution to the model (positive or negative). They are calculated at 8 different scales from 0.5 m to 8
m and for KNNs with K in 1;3;5. In order for our model to be explainable and compact, it is important
to select the features that are positively contributing to the model i.e. features that make our model
more discriminant and efficient. In this section we explain how we proceeded to select those features, on
CloudCompare and using Python.

4.2.4 On CloudCompare

A common problem in every classification problem is the preliminary class engineering to overcome
"class imbalance". In our point clouds, many classes were over-represented (ground classes 15 + Mo
points) and some had only few instances and samples (class C10 "Chimneys" 25 000 points). Even after
balancing the classes at around 7000 samples per class, our model was biased by the density of certain
classes in the point cloud. To tackle this problem we decided to de-densify accurate areas of the cloud
and over-sample miss classified areas in order for our model to take into consideration miss classified
points first (boosting). After doing so, we entered multiple training sessions and manually discarded
features and scales based on their importance to the model, taking into consideration the inference time
as well. We observed that the model didn’t require more than 35 features (out of 200+ possible features)
to achieve significant scores (Fig. 7). This allows the model to have low computational cost in contrast
to some state-of-the-art deep learning methods.

4.2.5 In Python

Various Python scripts were implemented by Mathilde Letard for her thesis. These scripts propose a
feature selection routine (Dash and Liu, 1997) to improve the explainability and the complexity of the
trained algorithm. Although information redundancy supposedly does not impact RF performances, it
disrupts the explainability of the feature importance values, since if two features bring similar information,
their relative importance will be underrepresented. The scripts keep only a set of uncorrelated features,
by using a bivariate feature selection (Dash and Liu, 1997; Guyon and Elisseeff, 2003), incorporating
an assessment of the features such as Information Gain (IG) (Dash and Liu, 1997) and the Pearson
linear correlation coefficient of attribute pairs. The correlation threshold and the scale at which each
feature is evaluated are user-defined, and determined after an empirical investigation. The same bivariate
procedure allows the selection of scales. After execuing the feature selection, the scripts decided to
promote small scales to limit the computation cost of the classifier. The selection process relies on a
majority voting procedure. Since it is impossible to consider a scale independently from its application
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Figure 7 – OA vs Number of Features / Number of Scales. The model doesn’t need a lot of features to
perform well and not a lot of scales. The final number of features selected is 35, the final number of
scales is 6.

to a feature, they retain the scales that are the most often selected when they are evaluated for each feature
independently. If we only consider the correlated features, only few will be discarded leaving the model
still computationally demanding and a final predictor vector of around 100 features, making the model
harder to explain.

To further reduce the dimension of the predictor vector, Mrs Letards work considered a feature rank-
ing depending on the IG. However, defining a fixed number of features and scales is highly task- and
site-dependent, and filter-based selection would not consider internal synergies between features. Con-
sequently, they use an embedded backward feature selection, relying on the RF feature importance, as
detailed in (Aggarwal, 2014; Dash and Liu, 1997). This selection is performed on the uncorrelated set
previously obtained. The optimal predictor vector is then identified through automatic OA monitoring,
using a sliding window and keeping the last best iteration before OAs start to drop (methodology as
described in Letard et al. 2023 sub.).

5 Results on Hessigheim Dataset

This section first presents the overall classification results obtained in the urban environments and the
impact of feature preselection and optimization on classification. All results presented are obtained on
a validation dataset strictly different than the training dataset. The model will be deployed on the test
dataset (also strictly different from the two previous datasets) and the results will be sent to the IFP
institute (creators of Hessigheim 3D) to compare classified points with officiel labels.

The starting set of features contains 200+ features, which include all possible features of 3DMASC
computed on PC1. To determine the scale to use for feature evaluation – i.e. IG assessment – we analyzed
the OA obtained when selecting features based on their IG at scales varying from 0.5 m to 8 m. Figure 7
shows that the optimal number of scales is 6 in terms of best OA.

Figure 8 show that multi-echo characteristics (multi-echo measurement such as Intensity of EchoRatio
can provide information about object contours and semi-transparent surfaces which can be used to better
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Figure 8 – Histogram showing the importance of each features in the model. The more a feature will
contribute in improving the model by improving its classification ability, the more it will be important.
The contextual features denoted by 𝐷{𝐻, 𝑍}_𝑃𝐶𝑋_𝐶𝑇𝑋_{𝐶𝑙𝑎𝑠𝑠}@{𝐾𝑁𝑁} = {𝐾} with 𝐾 € {1, 3, 5}

Figure 9 – Shap plot showing the contribution of each feature for each class.

identify and locate objects) and context-based features are predominant in the feature selection. In
opposition, geometry-based features are a minority. Figure 9 allows us to see which feature contributed
the most in the classification of each classes. The first two features 𝐷𝑍_𝑃𝐶𝑋_𝐶𝑇𝑋_11@𝐾𝑁𝑁 = 3
and 𝐷𝑍_𝑃𝐶𝑋_𝐶𝑇𝑋_11@𝐾𝑁𝑁 = 1 are context-based features, and contribute to the classification of
trees, impervious surfaces, low vegetation and roofs. The use of a previously classified ground PC as
contextual feature allows to improve the classification of points at the limit between ground and above
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ground features, namely house walls and lower tree branches, explaining the improvement observed when
they are included. Point-based and multi-echo characteristics (3rd feature in Fig. 9) allow to discriminate
the nature of different structures, having an important impact on the classification of trees and classes
that last send a return echo. The use of statistical operators seems particularly informative and able to
decuplate the informative power of point-based characteristics, in particular multi-echo attributes. These
features help the model to consider spatial relationships between points since it’s not an inherent ability
of the random forest.

Class Precision Recall F1-Score
Low Vegetation 0.76 0.77 0.77
Impervious Surface 0.83 0.82 0.82
Vehicle 0.96 0.97 0.97
Urban Furniture 0.77 0.72 0.74
Roof 0.95 0.97 0.96
Facade 0.83 0.86 0.84
Shrub 0.74 0.75 0.75
Tree 0.94 0.85 0.91
Soil/Gravel 0.91 0.41 0.92
Vertical Surface 0.94 0.96 0.95
Chimney 0.98 0.99 0.99

Table 2 – Optimized Model : 7000 points per class, with context cloud. OA : 0.88

The confusion matrix 2 associated to our last training session with our optimized model, shows important
improvements in ground class classification and urban furniture classification.Contextual-based features
constitute the majority of the final predictor. The rest of the predictor is composed of point-based features.

Figure 10 – Confusion matrix of the training session of our optimized model. The average accuracy is
0.88, the scores have improved for each class.
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Figure 11 – Final Classification of the Benchmarked Dataset. On the right : classified point cloud. On
the left : confidence of classification (green to red = low to high confidence). Total points classified : 51
Million. Total inference time : 27 hours running on 70+ CPUs.

After submitting the results to the IFP institute, the creators of the H3D dataset, we obtained further
details on the results of the classification detailed in Figure 11. 3DMASC achieved an overall accuracy
of 66.7, placing itself 13th out of 15 (OA ranking) on the benchmark leaderboard. The table 3 shows a
few other methods applied to the dataset.

Participant mF1 OA
ifp-RF 74.85 87.43
ifp-SCN 76.67 88.42
Gao-KPCONV 72.90 87.69
Gao-PN++ 41.20 68.50
Letard(ours) 59.13 66.70

Table 3 – Extract of the results of benchmarked methods on the H3D Dataset.

6 Discussion on Hessigheim Dataset

The previously introduced method and results show an optimized and compact model of at most 35
predictors computed on 6 scales and resulting in a good and reliable training results. However, this model
did not perform as well as expected when applied to the benchmark test set. This section aims to discuss
those results taking into consideration the existing work on PC classification with contextual, point and
neighbourhood-based features.

6.1 Classifier characteristics

Using 3DMASC, we were able to achieve significant scores of urban scenes classification with OAs up
to 88% (during training phase), using a lightweight classifier trained on 7000 points per class and using
35 features. However, during the inference of the test set for the benchmark competition, the model
performed poorly achieving an OA of 66% (close to the scores we had on non-optimized models). The
metrics provided by the IFP institute after evaluating our classification (Fig. 12) show a high rate of miss-
classification of the "Soil/Gravel" class with classes like "Impervious surface" and "Low Vegetation".
These 3 classes represent the "Ground" class of our context cloud whose features showed themselves
very important during the training session representing 4 out of the 8 most important features for our
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Figure 12 – Confusion matrix of the inference detailed on Fig 11. The matrix was computed by the IFP
institute.

classifier(Fig. 8). The confusion between these classes could be due to the fact that the "Intensity"
feature, commonly used to differentiate the nature of surfaces, was not used in the final predictor. In fact
the "Intensity" feature was very quickly discarded by the feature selection protocol. This could also be
due to the confidence threshold set on the CTX cloud, which was too high, leading "Ground" classes to
be less represented or simply that the contextual features made the model too specific and did not allow
it to properly discriminate ground classes. It illustrates that there is necessarily a balance between the
importance of a feature and its inherent usefulness to the model and to the environment in which the
model is performing.

Another reason for the poor performance of the model, could be the labelling inconsistencies of the
training dataset being corrected in the test dataset, hence the miss-classification of certain classes (ground
related classes see Fig 13). The two datasets being strictly different, a learning mistake made during the
training will penalize the model during the test inference. In addition to this, the fact that the training set
was boosted, by over-sampling and sub-sampling areas of points, might have influenced the robustness
of the model when applied to areas in the test set where those particular classes were sub-sampled or
over-sampled respectively. Although our model did not perform as well as the other methods such as
Gao-KPCONV (Thomas et al. 2019), it did not require a lot of samples to train on (7000 samples per
class) and still achieved scores close to certain deep-learning methods, requiring much more samples to
be trained on, like Gao-PN++ (Qi et al. 2017). Training 3DMASC with more than 7000 samples per
classes (eg. 30 000 samples per classes) has proven to make a difference in classification quality. By
training a model with 30 000 samples per class we achieved 92% OA after the training phase and the
quality of the classification on the benchmarked dataset was much better (Fig. 14). Additionally, the
Intensity feature was left in the final predictor even if it wasn’t showed as an important feature, this way
the model was forced to take into consideration the intensity of each point. It shows that the Intensity
feature was indeed important to differentiate the ground classes. Unfortunately, we did not have time to
start a new inference before the end of the internship and to submit the new result.

Compared to standard deep-learning methods, the model remains a lot more explainable than neural-
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Figure 13 – RGB visualization for the training set. On the left class "Low Vegetation". "Low" is
clearly questionable and the small vegetation hills should be labelled as "Shrub". On the right is class
"Soil/Gravel", the quality of the labelling can be questioned, there are points that obviously do not
correspond to gravel or soil.

network based methods. In fact, we were able to fully explain the model with features and their
corresponding importance (Fig. 8) and Shapley values (measures a feature’s average effect on a model’s
prediction, the average marginal contribution of a feature value across all the possible combinations of
features.) (Fig. 9), showing how relevant contextual features are. The best model for the benchmark
competition is IFP’s random forest classifier. The gap between the result of two similar techniques (ours
and theirs) is quite surprising, it could be due to the fact that they used features we didn’t use (they did
not describe their methodology in their paper) and different neighbourhoods that we didn’t think of. They
might’ve used more sample to train their model on. The second best model for the benchmark competition
is also IFP’s work, it is a SCN classifier (deep-learning model).

6.2 Dominant Scales

The method’s explainability allows us to identify standard characteristics of OMS classification. In first
place, a set of scales emerges from the feature and scale optimization technique (Letard et al. 2023, sub).
These scales are rather grouped into a same range (0.5m to 4m), the environment being adequate to this
kind of scales. The introduction of larger scales could be interesting with a parallel introduction of PC2 :
a subsampled version of our original point cloud on which large scale features could be computed and then
combined with the small scale features. This could allow to model to have a better understanding of the
scenery and still be rather efficient in feature computing. Smaller scales could also be introduced to favor
the discrimination between ground classes and tackle the miss-classification of the "Urban Furniture" and
"Shrub" classes (Fig. 12).

6.3 Dominant Features

As previously mentionned, the final predictor is composed of 35 features in total, each of them of
different nature. The features are : Point-based features (Echorat, Number of Returns), Contextual
features (horizontal and vertical distance to the center of the spherical neighbourhood of the context
point), Neighbourhood-based features (PCA3, Dip, Point Height) (see Appendix C). However, classical
features of 3D Data interpretation allowing the model to delineate shapes of local PCs (Brodu and Lague,
2012; Gross and Thoennessen, 2006; Vandapel et al., 2004; Weinmann et al., 2013) are almost unused.
This is certainly linked to the fact we analyze airborne lidar data, while these features were designed in
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Figure 14 – Classification on an extract of the benchmark dataset. On the left : classification with model
trained on 7000 samples per class, 35 features, 6 scales. On the right : classification with model trained
on 30 000 samples per class, 35 features, 6 scales. There is less confusion between class "Soil and Gravel"
(brown) and "Low Vegetation" (light green).

priority to describe terrestrial and mobile laser scanning, with more surface orientations. Another feature
that was not used at all during the study because of the setup is the color of each point (RGB). Due to the
complexity and height variation of the scene, a lot of shadowing was present, which made RGB features
non representative of the point they were associated to. Surely LiDAR data classification of rather plane
surfaces would use RGB feature because they represent a good indicator of belonging to a certain class
nearby.

6.4 Task Driven Application for 3DMASC

3DMASC offers new perspectives on 3D data classification : new features, indicators, methodology and
characteristics. All the former accessible and understandable to non-specialists. 3DMASC also offers
the opportunity for lightweight ML models to be introduced on unmanned aerial vehicles, or on-board
systems without important hardware capacity. In addition to this, the dual-cloud features could be used
in point cloud time series analysis, to detect changes at different scales. Finally, the previous subsections
show that with more data to train on, 3DMASC competes with state of the art methods and can be
generalized to multiple environments.

7 Conclusion

The work undertaken during this internship has proposed multiple things. First, the evaluation of a newly
developed 3D point clouds classification framework : 3DMASC, able to predict a label for each point
taking into consideration the importance of each feature in the predictor. 3DMASC stands out from other
3D point clouds classification methods with his explainability and compactness. However, in terms of
performance on a benchmarked dataset, 3DMASC has proven itself quite mediocre. The previous results
allow us to draw the following conclusions : (i) the number of features the model is trained on is important
(few samples will lead the model to miss-classify related classes), (ii) the feature selection protocol may
not be the best selection for a given environment (the inherent usefulness of a feature is always to be
considered even after the feature selection), (iii) Context-based features represent an important part of
the final predictor and are a good way to allow the model to spatially contextualize objects and class
instances, neighbourhood-based features allow the model to delineate shapes and point-based features
allow the model to grasp the nature of certain surfaces allowing it to be more discriminant. Overall
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3DMASC has a lot of potential thanks to its explainability and compactness. Further studies on urban
environments should be explored and undertaken to fully harness its potential.

8 Additional Work

The initial objective of the internship was to take part in 2 benchmark competition. However the
Hessigheim Dataset study took more time than anticipated but allowed me to provide a more complete
analysis of the study. The other benchmark competition was supposed to be on the SimKITTI64 dataset
(detailed in later section). The goal was to use the dual cloud feature computing ability of 3DMASC on
terrestrial mobile LiDAR data. It would’ve provided insight on how features and scales are selected given
the environment of the study and how 3DMASC is able to perform for autonomous driving classification.

8.1 The SimKITTI64 Dataset

This dataset was chosen to assess the performance of 3DMASC in a context of autonomous driving using
LiDAR mapping. SimKITTI64 is a dataset created by simulating a Velodyne HDL-64 inside a scene
modeled from the SemanticKITTI dataset (acquired using a Velodyne HDL-64 on top of a car). The
goal from the dataset is to test sensor domain generalization of 3D semantic segmentation methods in the
same environment, which tests if a method designed to semantically segment point clouds acquired using
one sensor, e.g., a Velodyne HDL-64, can generalize to point clouds acquired using another sensor, e.g.,
a Velodyne HDL-32. An interesting point with this simulated dataset is that it simulates semantic data
up to 80m whereas in SemanticKITTI (Fig 3) the data is annotated up to 50m. It simulates the HDL-32
sensor inside the modeled scene of sequence 08 in the SemanticKITTI dataset. This sequence was chosen
because it is used as validation sequence for 3D semantic segmentation methods. All point cloud files
are in ply format.

The dataset is manually labelled and there are 34 classes (8 moving object classes and 26 static classes).
The particularity of the dataset is that the labelling takes into consideration instance classification (moving
and non moving objects, eg. class 10: "car", class 252: "moving-car" etc.). This way, we plan on
exploiting the dual cloud features computing with 3DMASC and assess its proficiency in ground urban
areas classification and instance segmentation.

Each sequence of the dataset is composed of multiple attributes :
— (X, Y, Z) - the coordinates of a point.
— intensity - point based attribute, intensity of the beam during the sampling.
— semantic - the label of a point.
— instance - moving or non moving instance of an object.

During the sampling, the odometry was not recorded, this causes the frames to have different referentials
making it impossible to correctly align the frames like in Figure 15. We developed a python script reading
ply files and poses.txt, a file containing the transformation matrix for the file in order to adjust them to
the original trajectory. Once the point clouds were transformed we were able to build different datasets
to train our model using the 3DMASC plugin.

8.2 Other participation to the project

Throughout the internship, I helped debug the 3DMASC plugin for CloudCompare and give insights to
possible improvements and new functionalities. I also helped generalize Mrs Letard’s python scripts in
order to make them more accessible to different setups.
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Figure 15 – Transformed SimKitti64 dataset in order to retrieve the original trajectory of the SemanticKitti
Dataset. Each point color corresponds to a different class
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A Appendix

Figure 16 – Methodology process used during the study
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B Appendix

Figure 17 – 3DMASC plugin functional representation

C Appendix

Name Description Nature of feature
Echo Ratio Measure for local transparency and roughness Point-based
Number of Returns Total number of returns for a given pulse Point-based
DH to KNN Mean horizontal distance to k nearest neighbor Contextual Feature
DZ to KNN Mean vertical distance to k nearest neighbor Contextual Feature
PCA3 3 component of principal component analysis in a neighbourhood Neighbourhood-based
Dip Orientation of the beam on a surface Neighbourhood-based
DimZ Height of the point Neighbourhood-based

Table 4 – Name, description and nature of the features used in the optimized predictor.
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