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Abstract

Airborne sensor systems allow observations of our planet over large
areas that may be difficult to access (such as mountain environments).
Technological advances are resulting in smaller, lighter systems and allow
more accurate observations. Such observations are commonly acquired by
UAV (unmanned aerial vehicles) and consists of color, multi-spectral (also
covering the invisible spectrum via infrared wavelengths), and 3D point
clouds images. These observations allow various fields of work such as
in ecology (e.g biomass interaction) and computer science (e.g semantic
segmentation). In this report we will try to establish a state of the art of
semantic segmentation methods applied to ultra high resolution imagery
of mountain sides in order to classify various plant species.

This work is a side task of the SixP project.

1 Introduction to the project

SixP is a research project funded by the French National Research Agency
(ANR) from 2020 to 2023. It focuses on the ecology of plant communities
developing on former mining sites, whose soils are rich in metals. The study
of interactions between plants in these particular environments is at the heart
of the project. Studies are also developed to set up innovative methods of
characterization and identification of the vegetation via remote sensing and
artificial intelligence.

The major objectives of this project are therefore to:

• Characterize the variation of plant interactions along metal gradients in
soils

• Identify the multiple constraints for vegetation development in metal-rich
environments and their respective consequences on plant interactions

• Combine remote sensing approaches and in situ species identification via
artificial intelligence methods to allow mapping of species present in sites
of interest

The last objective is the one we’re going to work on. Our goal being to
establish a state of the art on the semantic segmentation methods that can be
used for our data (UAV imagery) and that achieve significant scores.

2 Introduction to Semantic Segmentation

One of the most difficult problems in computer vision has been image segmen-
tation. Image segmentation is different from images classification or object
recognition because it is not necessary to know what the visual concepts or ob-
jects are beforehand. In contrast to common pixel-based methods, CNN allow
for an efficient analysis of image textures, i.e., the contextual signal of multiple
neighbouring pixels. CNN have been initially designed for image categoriza-
tion tasks. A major factor of common CNN architectures for identifying such
features are multiple and sequenced pooling layer operator that aggregate the
feature maps derived from convolutional layers to a reduced spatial scale. This
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increases the robustness and efficiency of the network. The last layer of the
network will contain the information whether a feature that is indicative for the
target class was visible anywhere in the image or not. However, these models
indicate if a class is present or not in an image. We want to know precisely
where the class is located amongst other classes. In order to extract context
and become spatially aware, the networks have to be fully convolutionnal.

The proven most efficient model in spatial semantic segmentation is the
U-net. After being tested on multiple benchmark dataset, it has become the
reference in terms of fine-grained semantic segmentation. Even if it’s supposedly
very efficient for land covering segmentation, the lack of accurate and large
reference observations make the analysis very difficult (field operations very
hard to organize as well as a high logistic effort). Recently, deep learning based
methods have achieved significant progress in semantic segmentation. However,
performances tend to drop when the input images differ from the training input
images on the trained models. For example, a model trained on images of cities
will not perform as well as on images of mountain sides.

Figure 1: Semantic Segmentation using a U-net architecture

Other models were developed before the U-net, which also seem like good
candidates for land covering segmentation such as LinkNet, FPN and PSPNet.
We aim to compare each one of them as precisely as possible to find the most
suitable model to use in the 6P Project.

3 Related Work

In 2012, the AlexNet [KSH12] won the ILSVRC contest, which is a key event
in deep learning. Since then, DCNNs (Deep Convolutional Neural Networks)
have followed a lot of development .VGG [SZ14], ResNet [He+16] have been
proposed one after another. These frameworks are usually treated as feature
extractor and play an import role computer vision tasks, such as object detec-
tion [Ren+15], semantic segmentation and scene understanding [Zho+16], etc.

Semantic segmentation is a significant branch in computer vision. There are
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a considerable number of works focusing on the remote sensing imagery. With
the development of deep learning on remote sensing images, image-to-image seg-
mentation becomes the mainstream. Sherrah and Jamie [She16] proposed a deep
FCN with no down-sampling to infer a full-resolution label map. Their method
employs the strategy of the dilated convolution used in the DeepLab [Che+18]
architecture, which uses dilated kernel to enlarge the size of convolution output
(very heavy model). Marmanis et al. [Mar+18] embedded boundary detection
to the SegNet encoder-decoder architecture. The boundary detection signifi-
cantly improves semantic segmentation performance with extra model complex-
ity and proves itself very efficient when classes are overlapping. Kampffmeyer et
al. [KSJ16] focused on small object segmentation through measuring the uncer-
tainty for DCNNs. This approach achieves high overall accuracy as well as good
accuracy for small objects. When it comes to UAV high resolution imagery Yu
et al. [Yu+22] have enhanced the advanced version of the unet model (Unet++)
and compared it to other architectures combined with different encoders.

4 The Data

The data for this project was collected by a private company called ”L’Avion
Jaune”. It took pictures from a drone above mountain sides. In total we have
four study sites : Talus, Chichoue Bas, Chichoue Haut, Chichoue Milieu Bas,
Chichoue Milieu Haut. During this study, we will be only focused on the Talus
site. The images are 224*224 pixels and each site has it’s unique labeling index-
ation (0 to X for X classes, some classes can appear in multiple sites and class
1 of site A may differ from class 1 of site B). For each RGB Image (Figure 2) a
ground truth is associated (Figure 3). Each different color in the ground truth
represents a specific species/class.

Figure 2: RGB Image - Sample from the test test of the Talus site
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Figure 3: Ground Truth Image - Sample from the test test of the Talus site

5 Methods and Tools

5.0.1 Methods

This report is part of a bigger overall process shown in Figure 4. It focuses on
comparing different models and backbones in order to establish which model
and hyperparameters are best suited for our images. The data processing part
where we create our datasets from ortho Images as well as the labeling process
was done by Florent Guiotte. The rest of the process is the heart of this report.
After having generated our datasets composed of 224*224 RGB images and
labels, we compare different combinations of trained models and backbones
using cross validation to see which one has the best results. Finally we test
the combinations and observe different metrics that allow us to evaluate our
models. We did not perform any transfer learning during the project for it did
not significantly improve the models.

5.0.2 Tools

In order to test out different deep learning network architectures, we had to
take into account the time it would take to complete the analysis and my
abilities to manipulate such networks. We found a library called ”segmenta-
tion models pytorch” (SMP) which allows a very fast use and implementation
of various segmentation models and backbones. This library also proposes dif-
ferent evaluation metrics, however we decided to compute them on or own using
other libraries. We also used some more standard librairies : pytorch, numpy,
sklearn etc.
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Figure 4: Flow Chart of the project

6 Common Evaluation Metrics

In order to evaluate a segmentation model and it’s ability to properly classify
pixels, the evaluation indicators are precision (accuracy), IoU (intersection over
union), F1 Score (Dice) and recall. Precision refers to the percentage of pixels
that were correctly classified in the output result. IoU refers to the overlap
rate between the generated output frame and the original labeled frame (i.e
intersection over union). It’s relevancy in semantic segmentation comes from
the fact that each class has a defined area and that it is possible to compute
the difference between the ground truth and the prediction. Recall rate refers
to the proportion of correctly matched pixels in the ground truth. F1 Score is
the average of precision and recall.

• Precision = TP
TP+FP

• Recall = TP
TP+FN

• IoU = TP
TP+FP+FN

• F1 = Precision∗Recall
Precision+Recall ∗ 2

In order to synthesize our results we also computed the Mean Dice Score and
the Mean IoU for all classes. This way we can associate a global understandable
score to an architecture.
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6.1 Weighted Cross Entropy

A common issue with ”real world” datasets, specially the ones with no state of
the art, is the imbalance of observed object classes. In our case, the objects are
plants that are classified in multiple species from one site to another. However,
one or multiple of these species may be over represented in the dataset which
creates ”class imbalance”. This problem can have a detrimental effect on clas-
sification performance of neural networks trained on such datasets. Methods
overcoming class imbalance can be divided into two main categories. The first
category are sampling-based methods that operate directly on a dataset with
the aim to balance its class distribution. In their basic versions, the dataset is
balanced by increasing the number of instances from “minority” classes and by
decreasing the number of instances from “majority” classes, respectively. The
second category are algorithm-based methods. They make use of cost-based
training and decision thresholding. The idea behind these strategies is to assign
different costs to classification mistakes for different classes. In this project we
adapt to this constraint via an algorithm-level approach called weighted cross
entropy.

There are two ways of computing the weights that will be used in the cross en-
tropy loss function. The first one is to compute the weights outside of the train-
ing phase. In this case, the weights are computed using the inverse-frequency
method over the whole training set and won’t change during the inference pro-
cess. The other way is to compute the weights for each batch during the epochs.
That way, the weights are adapted to the batch and insure good class balance
for the inference phase. Since we don’t have a very large dataset, the computing
cost is not too high.

After testing these two methods individually on the Talus site using the Unet
with the ResNet-50 backbone, we compared the overall metrics and decided
to choose the second method that provides dynamic weights throughout the
inference phase.

7 Results

For each training and testing sessions, we store the evolution of the metrics
throughout the session in tensorboards in order to visualize predictions and
graphs. The average time of training varied from 1h for the light-weight models
and encoders (Mobile-Net V2 backbone) to 2h for the heavy-weights models and
encoders (Inception backbone).

7.1 First Testing Phase : Talus Site

The first step in testing our models was to test them on the Talus Site. After
testing all of our models, we selected the best configurations for the study site
(a configuration being a pair {network, encoder}). The following observations
were noted :

• The need for data is important and will most likely improve the models

• The fact that there are multiple classes affects the model’s performances
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• The quality of the labeling affects the model’s ability to extract context
from images and provide good segmentation

Seeing the results, we quickly realised that some models were overfitting during
the training sessions. The overftit began around epoch 30, so we reduced the
numbers of epoch from 100 to 30 in order to gain some time and only save fitted
checkpoints. The following tables resume the results we obtained on the Talus
site. The best configuration will be highlighted in bold, the caption specifies
the encoder that was used.

Network Accuracy Mean IoU Mean DICE
Unet 17.86% 0.0720 0.1170

Unet++ 17.49% 0.0796 0.1282
PSPNet 20.70% 0.0716 0.1186
Manet 21.94% 0.0972 0.1444
LinkNet 18.78% 0.0837 0.1331
FPN 19.50% 0.0771 0.1193

DeepLab-V3 15.23% 0.0380 0.0662

Table 1: ResNet50 - Talus - 9 classes

Network Accuracy Mean IoU Mean DICE
Unet 19.99% 0.0864 0.1345

Unet++ 16.87% 0.0782 0.1259
PSPNet 18.24% 0.0393 0.0711
Manet 14.66% 0.0660 0.1103
LinkNet 19.85% 0.0716 0.1123
FPN 18.52% 0.0726 0.1085

DeepLab-V3 12.70% 0.0463 0.0803

Table 2: ResNeXt50 - Talus - 9 classes

Network Accuracy Mean IoU Mean DICE
Unet 10.12% 0.0376 0.0683

Unet++ 8.54% 0.0355 0.0647
PSPNet 23.49% 0.0760 0.1233
Manet 9.42% 0.0410 0.0739

LinkNet 23.43% 0.0813 0.1266
FPN 12.14% 0.0472 0.0832

DeepLab-V3 6.72% 0.0263 0.0492

Table 3: EfficientNetB2 - Talus - 9 classes
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Network Accuracy Mean IoU Mean DICE
Unet 18.02% 0.0798 0.1242

Unet++ 25.15% 0.0965 0.1429
PSPNet 25.49% 0.0731 0.1136
Manet 20.85% 0.0889 0.1313
LinkNet 13.77% 0.0706 0.1180
FPN 19.79% 0.0867 0.1349

DeepLab-V3 X X X

Table 4: InceptionV4 - Talus - 9 classes

Network Accuracy Mean IoU Mean DICE
Unet 16.56% 0.0777 0.1254

Unet++ 16.39% 0.0654 0.1056
PSPNet 29.86% 0.0792 0.1181
Manet 16.98% 0.0731 0.1225
LinkNet 8.46% 0.0313 0.0582
FPN 9.94% 0.0343 0.0633

DeepLab-V3 6.74% 0.0287 0.0520

Table 5: MobileNetV2 - Talus - 9 classes

7.2 Comments and Analysis

Overall, the metrics show very poor results. This is due to the fact that there is
a major problem with our labeled data. Since our masks are not pixel-accurate,
the different models are not able to extract precise information from the con-
text of an image. Regarding the highest scores for each encoder, the accuracy
is always lower than 30%, the mean IoU and mean DICE shows that only very
little of the prediction was located onto the mask.

Given the quality of our labeled data, the other problem is to know whether
our metrics are reliable or not. Since our setup isn’t ”by the book” according
to the standard state of the art projects (accurate masks, important number
of data ...), we can’t take standard pixelwise metrics for semantic segmentation
and apply it to non pixel-accurate masks. This is why, during the mid-intership
meeting with Javiera Castillo, Sebastien Lefevre and myself, we decided to orient
our work towards finding a reliable and accurate metric that took into account
the quality of our labeled data.
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8 Finding an Optimal Metric

8.1 Object Detection Evaluation

Since we were not able to find segmentation models that returned consistent
results and that our labeled data is lacking precision, we looked into the matter
of object detection. The metrics used in Object Detection are called the same as
in Semantic Segmentation, however, they do not take into account each pixels of
the ground truth and the prediction but a context and the presence of an object
or not. As in Semantic Segmentation, we need to compute the metrics from the
confusion matrix (TP, FP, TN, FN) in order to compute our evaluation metrics
(IoU, Recall, Precision ...).

Figure 5: Representation of the metrics with object detection

In our case however, we won’t be using bounding boxes but the global shapes
of our labeled data and our predictions.

The following pseudo-code illustrates the procedure :
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Algorithm 1 Commpute TP, FP, FN

1: for iteration = 1, 2, . . .K do ▷ loop for each class
2: TP, FP, FN = 0
3: P = (Pred == i) ▷ Get predicted binary mask for class i
4: M = (Mask == i) ▷ Get binary ground truth mask for class i
5: CC = sklearn.measure.label(M) ▷ label all the connected regions of M
6: for c in CC do
7: intersection = Pred ∗ c ▷ Get predicted pixels within c

8: if sum(intersection
sum(c) > λ then ▷ Intersection is an array of binary

masks
9: TP+ = 1

10: else
11: FN+ = 1
12: end if
13: end for
14: B = P − (M ∗ P ) ▷ Get all pixels predicted as i, but not in the ground

truth
15: CCB = sklearn.measure.label(B) ▷ Label all connected regions of

prediction for class i
16: for c in CCB do
17: if sum(c) >= α then
18: FP+ = 1
19: end if
20: end for
21: end for
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Here is an example that illustrates the expected results (6).

Figure 6: From left to right : mask, prediction and mask != prediction.

With the previous mask and prediction as inputs for our algorithm, we have
the following results (6) :

X White Class
TP 2
FP 2
FN 0

Table 6: Counting TP, FP and FN at threshold λ = 0.8

In fact, two of the dummy predictions have at least 80% of their area on the
mask, so they are counted as true positives. It’s not the case for the other two,
that means they are counted as false positives. This allows us to have a reliable
number of TP, FN and FP in order to compute precision and recall for each of
our classes.

8.2 Results With the New Method

After including this step into the inference phase of our test.py script, we im-
plemented a way of plotting the precision-recall curve and compute the Area
Under the Roc Curve (eg. figure7). Each point in the curve is computed for a
different threshold for the IoU (from 0.1 to 0.7 with a 0.05 step).
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Figure 7: Precision-Recall Curve for Class 1, Average Precision is 0.097

The overall results we got during the test phase using the new method shows
that our classification is in fact of poor quality. Only one class is detected by
the model and correctly predicted. After computing the precision and recall for
each classes, we’ve computed the Mean Average Precision using the ”all-points
interpolation method” : mAP = 0.009787867343884947. Because of the
poor classification, only few predictions were counted as True Positives, almost
all of the other predictions were counted as False Negatives. The problem here is
the spatial location of the prediction, being completely out of the mask’s bounds.

8.2.1 Comments

It’s much more likely that object detection will work better with the quality
of our labeling and the amount of data we have. This requires a first step of
pre-processing in order to transform the masks into bounding boxes and then
to train object detection models (eg: YOLO) on our data. The main problem
would change from ”Which species of plants are on the image and where are
they ?” to ”Where are the plants?” for a less granular problem.
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9 Conclusion of the study

During this analysis, we’ve adopted different approaches on a semantic segmen-
tation problem. The first one was to set a State of The Art for our data with
the most commonly used networks and encoders. We’ve obtained very poor and
not convincing results. However, given our data and the labels, the standard
metrics did not apply and therefore did not return reliable and trustworthy re-
sults (we could not say for sure that our models were not performing well). We
decided to explore the evaluation methods in object detection in order to have
a metric that is specifically adapted to our problem. Theoretically, the new
metric returns reliable values for the amount of TP, FP and FN in a prediction.
However the segmentation models did not return good predictions and our new
evaluation showed that they were not performing well at all.

The quality of the labeling and the ineffectiveness of segmentation models
on our data has led us to the conclusion that it would be better to lead an
”Object Detection” study on the data, for the quality of the labeling was too
approximate.
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