
ISC3, Fall 2020 (A22)

Computer works report 001

Pierre Lague

September 23, 2022

1 Exercice 1 : Runge phenomenon, cubic splines

In this exercice we consider the function f defined in [-1, 1] by :

f(x) =
1

1 + 25x2
(1)

From f we want to generate a dataset made of the couples (xi, yi)i=0,...,n defined by
xi = −1 + 2∗i

n , yi = f(xi). We are looking for the polynomial pn of degree less than or
equal to n such that pn(xi) = f(x). For that we use the Lagrange polynomials Li(x) seen
in the course.

1.1 a) Implementing the poly interp function

Using the Lagrange Polynomial function given in the course, write a

Scilab

function :

function y = poly_interp(x, xi, yi)

// (xi, yi) -> dataset

// returns the interpolation value y at point x

...

1



The function is as follow :

function y=poly_interp(x, xi, yi)

y = zeros(x) //initialize y as 0 matrix of size x

l = length(xi);

for i=1:l

y = y + yi(i) * LagrangePol(x,xi,i);

end;

endfunction

After implementing the function we have to write the main part of the script. I’ve
decided to do a for n = 5 : 3 : 15 loop in order to have 3 interpolation polynomials and to
observe the Runge Unstability Phenomenon as N increases. The script is as follows :

for n=5:3:15

//data

xval=linspace(-1,1,200)’;

yi = 0, xi = 0;

for i = 1:n

xi(i) = (-1 + ((2*i)/n))

yi(i) = (1 ./ (1+25*xi(i).^2))

end

//plotting

xx_p = xval;

yy_p = poly_interp(xx_p, xi, yi)

plot2d(xx_p,yy_p, rect=[-1,-0.5,1,1.5], n);//interpolation polynomial

plot2d(xi,yi,rect=[-1,-0.5,1,1.5], -1);//interpolation points

end

xlabel("x");ylabel("y");

title("Polynomial interpolation");

The following plot is the result we obtained :

2



Figure 1: Observing the Runge Unstability Phenomenon as N increases. Lack of conver-
gence is obivous.

1.2 b) Use the Scilab pre-implemented splin() and interp() to interpo-
late the data by means of cubic splines. Compare with polynomial
interpolation.

For this question I used the pre-implemented functions in scilab to see if the interpola-
tion with cubic splines presents the same Unstability phenomenon as interpolation with
polynomials.

The code is as follows:

//working with built in methods

//creating the points

for n=5:3:15

yi = 0, xi = 0;

for i = 1:n

xi(i) = (-1 + ((2*i)/n))

3



yi(i) = (1 ./ (1+25*xi(i).^2))

end

//data

xval=linspace(-1,1,101)’;

//spline

d = splin(xi, yi, ’not_a_knot’)

xx_s=xval;

//interpolation

yy_s=interp(xx_s,xi,yi,d,"linear");

plot2d(xi,yi,-1);

plot2d(xx_s,yy_s,n);

plot2d(xi,yi,n+3);

end

xlabel("x");ylabel("y");

title("Spline interpolation");

//Cubic spline interpolation applied to the Runge function seem to avoid the

//Runge Unstability phenomenon.

//When we put 15 points on the other one, the phenomenon was clearly visible.

//Here it’s much smoother.

4



The plot we obtained is the following :

Figure 2: Spline Inerpolation prevents the Unstability Phenomenon from hapenning.

By comparing the two plots, we can see that the Polynomial Interpolation Method
shows a lack of convergence very early for N = 5 : 3 : 15. However the Spline Interpolation
Method shows that there is a much smoother convergence when N increases.

2 Exercice 2: Construction of a cubic spline by hand

Since the exercice was done in class, I will put my code and the plot I got after the
execution.

//important functions

function [r1, r2]=eval_spline(x, z)

coefs = end_spline(z)

r1=0, r2=0;

for i=1:4

5



r1 = r1 + coefs(i)*x.^(i-1)

r2 = r2 + coefs(i+4)*x.^(i-1)

end

endfunction

function render_spline(z, arg)

space = linspace(0.5, 3.5, 200)

x1 = linspace(0.5, 2, 200)

x2 = linspace(2, 3.5, 200)

[r1, _] = eval_spline(x1, z) //not the most optimal way, but it works

[_, r2] = eval_spline(x2, z)

plot(x1,r1, arg)

plot(x2,r2, arg)

endfunction

plot([1, 2, 3], [1, 2, 0], ’o’)

render_spline(5, ’-b’)

render_spline(7, ’-r’)

render_spline(10, ’-g’)

The resulting plot is the following :

Figure 3: Interpolated points using a cubic spline. Multiple values for N.

6


	Exercice 1 : Runge phenomenon, cubic splines
	a) Implementing the poly_interp function
	b) Use the Scilab pre-implemented splin() and interp() to interpolate the data by means of cubic splines. Compare with polynomial interpolation.

	Exercice 2: Construction of a cubic spline by hand

