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1 Exercice 1 : Piecewise linear regression

From a dataset point cloud, we want to achieve a regression using the following function
defined on [0, 1]:

fd(x) =
∑d

j=1 ujΛj(x) where Λj(x) = max
(
0, 1− (d− 1)

∣∣∣x− j−1
d−1

∣∣∣) .

(1)

We’re provided with a function that defines a piecewise linear function implemented in
Scilab.

Consider the following dataset generated by the following Scilab script

N = 100

d = 5

xi = rand(N, 1)

yi = sin(2*%pi*xi)+0.2*rand(N, 1, "normal")

1) Assembling the system matrix
In a Scilab script, assemble the matrix A ∈ MNd(R)

A = zeros(N, d)

for i=1:N

//modifying the i-th column of the matrix

A(:,i) = max(0, 1-(d-1)*abs(xi-(i-1)/(d-1)))

end

2) Solve a normal equation
Now solve the normal equation : ATAu = ATy
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coefs = (A'*A)\(A'*yi)

This line of code gives us the coefficients of the regression equation.

3) By using the function piecewiselinear(), plot the resulting regression
function in solid line. On the same graphics, plot also the point cloud (xi,
yi)i=1,...,N with circles for each point. Check if the resulting function f˜(x) is
a good regression function.

x = linspace(0, 1, 200)

y = piecewiselinear(x, d, coefs)

plot(x, y, 'r');

plot(xi, yi, 'o')

xgrid

title('5 points Piecewise regression')

xlabel('x')

ylabel('y')

legend(['Piecewise Reg.', 'Data Pts.'])

The script above gives us the following plot :

Figure 1: 5 points piecewise regression of our dataset, parameter d influences the quality
of the regression.
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1.1 Tykhonov Regularization Coefficient

Next, we would like to add a Tykhonov regularization term to the least square minimization
problem, and study the effect of the regularization coefficient > 0.

Consider a set of regularization coefficients µk = 10k, k = [−8, 2]. For each k
solve the regularized normal equations (ATA+ µk ∗ I)µk = ATy

The following code answers the question :

for k=-8:2

d = 10

x = linspace(0, 1, 200)

//tykhonov regularization coefficient

mu = 10^k

//system matrix (same use as ven der monde but we're not looking for a polynomial)

A_reg = zeros(N, d+1)

//identity matrix

I = eye(d+1, d+1)

//filing the matrixs columns

for j=1:d+1

A(:,j) = max(0, 1-(d-1)*abs(xi-(j-1)/(d-1)))

end

//solving the linear system to find coefficients.

coefs_reg = (A'*A+mu*I)\(A'*yi)

//computing the regression

y_reg = piecewiselinear(x, d, coefs_reg)

plot(x, y_reg, 'r');

end

plot(xi, yi, 'o')

xlabel('x')

ylabel('y')

legend(['Regression'])

title('Tykhonov Regularized Regression')
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Figure 2: Multiple Tykhonov Regularized Regressions. It seems the smaller µ is the better
the regression is.

4



2) On another graphic, plot the parametric curve − > Didn’t really figure
this one out...

µk 7→ (∥Auk − y∥ , ∥uk∥)T (2)

y_reg = piecewiselinear(x, d, coefs_reg)

x_3 = norm((A*coefs_reg) - yi)

y_3 = norm(coefs_reg)

plot(log(x_3), log(y_3), 'o')

xlabel('x')

ylabel('y')

title('Parametric Curve')

The previous code gives the following plot:

Figure 3: The error vs the coefficients.

This experiment is used to determine what is the best empirical value for µk in order
to find the best regularized regression. The lower the error is for a µk given the better
the regression is. In this plot we can see that the best regularization coefficient is µk − >
log(µk)≈-1.6.
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